A novel data-driven nonlinear solver for solid mechanics using time series forecasting
被引:33
|
作者:
Nguyen, Tan N.
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South KoreaSejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
Nguyen, Tan N.
[1
]
Nguyen-Xuan, H.
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
Ho Chi Minh City Univ Technol HUTECH, CIRTECH Inst, Ho Chi Minh City, VietnamSejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
Nguyen-Xuan, H.
[1
,2
]
Lee, Jaehong
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South KoreaSejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
Lee, Jaehong
[1
]
机构:
[1] Sejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
[2] Ho Chi Minh City Univ Technol HUTECH, CIRTECH Inst, Ho Chi Minh City, Vietnam
In this paper, a novel data-driven nonlinear solver (DDNS) for solid mechanics using time series forecasting is first proposed. The key concept behind this work is to modify the starting point of iterations of the modified Riks method (M-R). The modified Riks method starts iterations at the previously converged solution point while the proposed method starts at a predicted point which is very close to the converged solution of the current step. In the prediction phase, the predicted starting point of the current step is simply determined only based on the previously converged solutions and the predictive networks built via group method of data handling (GMDH) known as a self-organizing deep learning method for time series forecasting problems. Then, the correction phase of the modified Riks method is used to obtain the converged solution via an iterative procedure starting at the predicted point. In this work, the training and applying processes of networks are continuously performed during the analysis to predict the starting point of each increment. It is interesting that the present deep learning networks are built with small data in very short time. Especially, the proposed method is not only simple in implementation but also reduces significantly number of iterations and computational cost compared with the conventional modified Riks method. Some benchmark problems on geometrically nonlinear analysis of shells are provided and solved by using isogeometric analysis (IGA) in conjunction with the first-order shear deformation shell theory (FSDT). The high accuracy, efficiency and stability of the proposed method are confirmed.
机构:
Sejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South KoreaSejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
Nguyen, Tan N.
Lee, Jaehong
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Deep Learning Architecture Res Ctr, Seoul, South KoreaSejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
Lee, Jaehong
Liem Dinh-Tien
论文数: 0引用数: 0
h-index: 0
机构:
Van Lang Univ, Fac Fundamental Sci, Ho Chi Minh City, VietnamSejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
Liem Dinh-Tien
Dang, L. Minh
论文数: 0引用数: 0
h-index: 0
机构:
FPT Univ, Dept Informat Technol, Ho Chi Minh City, VietnamSejong Univ, Dept Architectural Engn, 209 Neungdong Ro, Seoul 05006, South Korea
机构:
Jakarta Smart City, Dept Commun Informat & Stat, Jakarta, IndonesiaJakarta Smart City, Dept Commun Informat & Stat, Jakarta, Indonesia
Sulasikin, Andi
Nugraha, Yudhistira
论文数: 0引用数: 0
h-index: 0
机构:
Jakarta Smart City, Dept Commun Informat & Stat, Jakarta, Indonesia
Telkom Univ, Sch Comp, Bandung, IndonesiaJakarta Smart City, Dept Commun Informat & Stat, Jakarta, Indonesia
Nugraha, Yudhistira
Kanggrawan, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Jakarta Smart City, Dept Commun Informat & Stat, Jakarta, IndonesiaJakarta Smart City, Dept Commun Informat & Stat, Jakarta, Indonesia
Kanggrawan, Juan
Suherman, Alex L.
论文数: 0引用数: 0
h-index: 0
机构:
Telkom Univ, Directorate Res & Community Serv, Bandung, IndonesiaJakarta Smart City, Dept Commun Informat & Stat, Jakarta, Indonesia
Suherman, Alex L.
2020 IEEE INTERNATIONAL SMART CITIES CONFERENCE (ISC2),
2020,
机构:
Sejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South KoreaSejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South Korea
Nguyen, Tan N.
Lee, Seunghye
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South KoreaSejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South Korea
Lee, Seunghye
Nguyen-Xuan, H.
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South Korea
Ho Chi Minh City Univ Technol HUTECH, CIRTECH Inst, Ho Chi Minh City, VietnamSejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South Korea
Nguyen-Xuan, H.
Lee, Jaehong
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South KoreaSejong Univ, Deep Learning Architecture Res Centel, 209 Neungdong Ro, Seoul 05006, South Korea
机构:
Columbia Univ, Dept Civil Engn & Engn Mech, 614 SW Mudd,Mail Code 4709, New York, NY 10027 USAColumbia Univ, Dept Civil Engn & Engn Mech, 614 SW Mudd,Mail Code 4709, New York, NY 10027 USA
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Yao, Yong
Li, Shizhu
论文数: 0引用数: 0
h-index: 0
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Li, Shizhu
Wu, Zhichao
论文数: 0引用数: 0
h-index: 0
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Wu, Zhichao
Yu, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Yu, Chi
Liu, Xinglei
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Liu, Xinglei
Yuan, Keyu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Yuan, Keyu
Liu, JiaCheng
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Liu, JiaCheng
Wu, Zeyang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Wu, Zeyang
Liu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China