A 0.4-V 0.93-nW/kHz Relaxation Oscillator Exploiting Comparator Temperature-Dependent Delay to Achieve 94-ppm/°C Stability

被引:50
作者
Jiang, Haowei [1 ]
Wang, Po-Han Peter [1 ]
Mercier, Patrick P. [1 ]
Hall, Drew A. [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92093 USA
关键词
Internet-of-things (IoT); low power; low voltage; relaxation oscillator; temperature coefficient (TC);
D O I
10.1109/JSSC.2018.2859834
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the analysis and design of a relaxation oscillator that counteracts the complementary-to-absolute-temperature (CTAT) property of the comparator delay with the proportional-to-absolute-temperature (PTAT) property of the RC core to realize temperature-stabilized operation. By using a feedback bias network to linearize the comparator CTAT delay, thus improving the overall temperature stability by 20x, this technique enables a comparator with similar to 20x less bandwidth and an overall oscillator with similar to 5x lower power than conventional approaches. In a 0.18-mu m silicon on insulator CMOS process, this design consumes 1.14 nW from a 0.4-V supply operating at 1.22 kHz, with a temperature coefficient (TC) as low as 40 ppm/degrees C (mu = 94 ppm/degrees C for n = 5) achieving state-of-the-art efficiency (0.93 nW/kHz) for kilohertz-range relaxation oscillators.
引用
收藏
页码:3004 / 3011
页数:8
相关论文
共 18 条
[1]   NOISE IN RELAXATION-OSCILLATORS [J].
ABIDI, AA ;
MEYER, RG .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1983, 18 (06) :794-802
[2]   Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI [J].
Assaderaghi, F ;
Sinitsky, D ;
Parke, SA ;
Bokor, J ;
Ko, PK ;
Hu, CM .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44 (03) :414-422
[3]   Nanopower CMOS Relaxation Oscillators With Sub-100 ppm/°C Temperature Coefficient [J].
Chiang, Yu-Hsuan ;
Liu, Shen-Iuan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2014, 61 (09) :661-665
[4]   Temperature-dependent characteristics of polysilicon and diffused resistors [J].
Chuang, HM ;
Thei, KB ;
Tsai, SF ;
Liu, WC .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (05) :1413-1415
[5]  
Dai S., 2015, International Conference on Complex Systems Engineering, P1
[6]  
Daly Denis C., 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, P554, DOI 10.1109/ISSCC.2008.4523303
[7]   Analysis and Design of an Ultralow-Power CMOS Relaxation Oscillator [J].
Denier, Urs .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (08) :1973-1982
[8]  
Griffith D., 2015, ULTRALOW POWER SHORT, P209
[9]  
Griffith D, 2014, ISSCC DIG TECH PAP I, V57, P300, DOI 10.1109/ISSCC.2014.6757443
[10]  
Jang T, 2016, ISSCC DIG TECH PAP I, V59, P102, DOI 10.1109/ISSCC.2016.7417927