C(n)-almost periodic and C(n)-almost automorphic solutions for a class of partial functional differential equations with finite delay

被引:4
作者
Elazzouzi, Abdelhai [1 ]
机构
[1] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
关键词
Analytic semigroup; Fractional power of operators; Variation of constants formula; Reduction principle; C-(n)-almost periodic solution; C-(n)-almost automorphic solution; EXISTENCE; STABILITY;
D O I
10.1016/j.nahs.2010.04.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work deals with the existence of C-(n)-almost periodic and C-(n)-almost automorphic solutions for a class of partial functional differential equations with finite delay. We suppose that the homogeneous part without delay is the infinitesimal generator of an analytic semigroup and that the delayed part is continuous with respect to fractional powers of the generator. We use the variation of constants formula and the reduction method developed in Adimy et al. (2009) [13] to prove the existence of C-(n)-almost periodic and C-(n)-almost automorphic solutions when there is at least one bounded solution in R. When the solution semigroup of the homogenous linear equation has an exponential dichotomy, we prove the existence and uniqueness of CO-almost periodic and C-(n)-almost automorphic solutions of the following equation. d/dtu(t) = -Au(t) + L(ut) + f(t) for t >= sigma. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:672 / 688
页数:17
相关论文
共 17 条
[1]  
Adamczak M., 2003, P 6 C FUNCTIONS SPAC, P39
[2]   Reduction principle and dynamic behaviors for a class of partial functional differential equations [J].
Adimy, Mostafa ;
Elazzouzi, Abdelhai ;
Ezzinbi, Khalil .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1709-1727
[3]  
[Anonymous], 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[4]  
Baillon J.B., 2006, ANN SOCIETATIS MATHE, VXLVI, P263
[5]  
Bugajewski D., 2004, INT J MATH MATH SCI, V61, P3237
[6]  
Engel K., 2001, GRADUATE TEXTS MATH, V194
[7]  
Ezzinbi K., 2008, CUBO, V10, P61
[8]   Massera-type theorem for the existence of C(n)-almost-periodic solutions for partial functional differential equations with infinite delay [J].
Ezzinbi, Khalil ;
Fatajou, Samir ;
N'guerekata, Gaston Mandata .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (04) :1413-1424
[9]  
Fink A, 1974, Lectures notes, V377
[10]   Existence and uniqueness of C(n)-almost periodic solutions to some ordinary differential equations [J].
Liang, Jin ;
Maniar, L. ;
N'Guerekata, G. M. ;
Xiao, Ti-Jun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (09) :1899-1910