Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2

被引:161
作者
Rui, LY [1 ]
Fisher, TL [1 ]
Thomas, J [1 ]
White, MF [1 ]
机构
[1] Harvard Univ, Sch Med, Joslin Diabet Ctr, Howard Hughes Med Inst, Boston, MA 02215 USA
关键词
D O I
10.1074/jbc.M105332200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Insulin and insulin-like growth factor-1 (IGF-1) regulate metabolism and body growth through homologous receptor tyrosine kinases that phosphorylate the insulin receptor substrate (IRS) proteins. IRS-2 is an important IRS protein, as it mediates peripheral insulin action and beta -cell survival. In this study, we show that insulin, IGF-1, or osmotic stress promoted ubiquitin/proteasome-mediated degradation of IRS-2 in 3T3-L1 cells, Fao hepatoma, cells and mouse embryo fibroblasts; however, insulin/IGF-1 did not promote degradation of IRS-1 in 3T3-L1 preadipocytes or mouse embryo fibroblasts. MG132 or lactacystin, specific inhibitors of 26S proteasome, blocked insulin/IGF-1-induced degradation of IRS-2 and enhanced the detection of ubiquitinated IRS-2. Insulin/IGF1-induced ubiquitination and degradation of IRS-2 was blocked by inhibitors of phosphatidylinositol 3-kinase (wortmannin or LY294002) or mTOR (rapamycin). Chronic insulin or IGF-1 treatment of IRS-1-deficient mouse embryo fibroblasts inhibited IRS-2-mediated activation of Akt and ERK1/2, which was reversed by lactacystin pretreatment. By contrast, IRS-I activation of Akt and ERK1/2 was not inhibited by chronic insulin/IGF-1 stimulation in IRS-2-deficient mouse embryo fibroblasts. Thus, we identified a novel negative feedback mechanism by which the ubiquitin/proteasome-mediated degradation of IRS-2 limits the magnitude and duration of the response to insulin or IGF-1.
引用
收藏
页码:40362 / 40367
页数:6
相关论文
共 41 条
[1]   The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307 [J].
Aguirre, V ;
Uchida, T ;
Yenush, L ;
Davis, R ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :9047-9054
[2]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[3]   IRS-2 pathways integrate female reproduction and energy homeostasis [J].
Burks, DJ ;
de Mora, JF ;
Schubert, M ;
Withers, DJ ;
Myers, MG ;
Towery, HH ;
Altamuro, SL ;
Flint, CL ;
White, MF .
NATURE, 2000, 407 (6802) :377-382
[4]   The ubiquitin-proteasome pathway: The complexity and myriad functions of proteins death [J].
Ciechanover, A ;
Schwartz, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :2727-2730
[5]  
DeFronzo RA, 1997, DIABETES REV, V5, P177
[6]   Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation [J].
Dennis, PB ;
Fumagalli, S ;
Thomas, G .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (01) :49-54
[7]   Persistent activation of phosphatidylinositol 3-kinase causes insulin resistance due to accelerated insulin-induced insulin receptor substrate-1 degradation in 3T3-L1 adipocytes [J].
Egawa, K ;
Nakashima, N ;
Sharma, PM ;
Maegawa, H ;
Nagai, Y ;
Kashiwagi, A ;
Kikkawa, R ;
Olefsky, JM .
ENDOCRINOLOGY, 2000, 141 (06) :1930-1935
[8]   Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene [J].
Elchebly, M ;
Payette, P ;
Michaliszyn, E ;
Cromlish, W ;
Collins, S ;
Loy, AL ;
Normandin, D ;
Cheng, A ;
Himms-Hagen, J ;
Chan, CC ;
Ramachandran, C ;
Gresser, MJ ;
Tremblay, ML ;
Kennedy, BP .
SCIENCE, 1999, 283 (5407) :1544-1548
[9]   The cellular chamber of doom [J].
Goldberg, AL ;
Elledge, SJ ;
Harper, JW .
SCIENTIFIC AMERICAN, 2001, 284 (01) :68-73
[10]   Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases [J].
Goldstein, BJ ;
Ahmad, F ;
Ding, W ;
Li, PM ;
Zhang, WR .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1998, 182 (1-2) :91-99