Strategy to achieve a 5-log Salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma (HVACP)

被引:60
作者
Mahnot, Nikhil Kumar [1 ,2 ]
Mahanta, Charu Lata [1 ]
Keener, Kevin M. [2 ,3 ,4 ]
Misra, N. N. [3 ]
机构
[1] Tezpur Univ, Dept Food Engn & Technol, Sch Engn, Tezpur, Assam, India
[2] Purdue Univ, Dept Food Sci, Smith Hall, W Lafayette, IN 47907 USA
[3] Iowa State Univ, Ctr Crops Utilizat Res, Ames, IA USA
[4] Iowa State Univ, BioCentury Res Farm, Ames, IA USA
关键词
Cold plasma; Non-thermal; Coconut; Electrical discharge; Ascorbic acid; Citric acid; Minerals; NONTHERMAL PLASMA; MICROBIAL INACTIVATION; ESCHERICHIA-COLI; CHEMICAL-COMPOSITION; PRESSURE; QUALITY; MECHANISMS; OZONE; FOOD;
D O I
10.1016/j.foodchem.2019.01.084
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This study examined high voltage atmospheric cold plasma (HVACP) technology as a non-thermal intervention for inactivating Salmonella enterica serovar Typhimurium LT2 (ST2) in tender coconut water (TCW). Treatment with HVACP in air at 90 kV for 120 s inactivated 1.30 log(10) of ST2. Development of a TCW stimulant suggested an interfering role of magnesium and phosphate salts with HVACP inactivation. Generation of reactive gas species, viz. ozone and hydrogen peroxides were found to be responsible for microbial inactivation. The addition of 400 ppm citric acid to the TCW effectively reduced ST2 by 5 log(10) during HVACP treatment. Under these conditions, higher cellular leakage and morphological damage were observed in ST2. Minimal physico-chemical changes in TCW were observed with HVACP treatment, except for an 84.35% ascorbic acid loss (added externally). These results demonstrate a potential pathway for developing highly effective cold plasma treatments to preserve fruit and vegetable juices.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 38 条
[1]  
[Anonymous], 2001, Federal Register, V66, P6137
[2]  
Arjunan K. P., 2016, PLASMA PROCESSES POL
[3]   Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package [J].
Connolly, J. ;
Valdramidis, V. P. ;
Byrne, E. ;
Karatzas, K. A. ;
Cullen, P. J. ;
Keener, K. M. ;
Mosnier, J. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (03)
[4]   Continuous dense-phase CO2 processing of a coconut water beverage [J].
Damar, Sibel ;
Balaban, Murat O. ;
Sims, Charles A. .
INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2009, 44 (04) :666-673
[5]   Reference organism selection for microwave atmospheric pressure plasma jet treatment of young coconut liquid endosperm [J].
Gabriel, Alonzo A. ;
Aba, Richard Paolo M. ;
Tayamora, Daniel Joshua L. ;
Colambo, Julius Ceasar R. ;
Siringan, Maria Auxilla T. ;
Rosario, Leo Mendel D. ;
Tumlos, Roy B. ;
Ramos, Henry J. .
FOOD CONTROL, 2016, 69 :74-82
[6]   Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: A review [J].
Gaunt, Lindsey F. ;
Beggs, Clive B. ;
Georghiou, George E. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (04) :1257-1269
[7]   Bacterial Mg2+ Homeostasis, Transport, and Virulence [J].
Groisman, Eduardo A. ;
Hollands, Kerry ;
Kriner, Michelle A. ;
Lee, Eun-Jin ;
Park, Sun-Yang ;
Pontes, Mauricio H. .
ANNUAL REVIEW OF GENETICS, VOL 47, 2013, 47 :625-646
[8]   Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review [J].
Guo, Jian ;
Huang, Kang ;
Wang, Jianping .
FOOD CONTROL, 2015, 50 :482-490
[9]   Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus [J].
Han, L. ;
Patil, S. ;
Boehm, D. ;
Milosavljevic, V. ;
Cullen, P. J. ;
Bourke, P. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (02) :450-458
[10]   Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores [J].
Hong, Y. F. ;
Kang, J. G. ;
Lee, H. Y. ;
Uhm, H. S. ;
Moon, E. ;
Park, Y. H. .
LETTERS IN APPLIED MICROBIOLOGY, 2009, 48 (01) :33-37