On exit time of stable processes

被引:7
作者
Graczyk, Piotr [2 ]
Jakubowski, Tomasz [1 ]
机构
[1] Wroclaw Univ Technol, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
[2] Univ Angers, Lab Math LAREMA, F-49045 Angers 01, France
关键词
Stable process; Exit time; EXTREMA; MAXIMA;
D O I
10.1016/j.spa.2011.10.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the exit time tau = tau((0,infinity)) for 1-dimensional strictly stable processes and express its Laplace transform at t(alpha) as the Laplace transform of a positive random variable with explicit density. Consequently, tau satisfies some multiplicative convolution relations. For some stable processes, e.g. for the symmetric 2/3-stable process, explicit formulas for the Laplace transform and the density of tau are obtained as an application. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1992, HDB IMPEDANCE FUNCTI
[2]  
Axler S., 2001, GRAD TEXT M, DOI 10.1007/978-1-4757-8137-3
[3]   MAXIMA OF SUMS OF RANDOM-VARIABLES AND SUPREMA OF STABLE PROCESSES [J].
BINGHAM, NH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (04) :273-296
[4]  
Darling D. A., 1956, T AM MATH SOC, V83, P164
[7]  
Fourati S, 2006, PROBAB THEORY REL, V135, P201, DOI 10.1007/s00440-005-0455-2
[8]   On Wiener-Hopf factors for stable processes [J].
Graczyk, Piotr ;
Jakubowski, Tomasz .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (01) :9-19
[9]   Spectral properties of the Cauchy process on half-line and interval [J].
Kulczycki, Tadeusz ;
Kwasnicki, Mateusz ;
Malecki, Jacek ;
Stos, Andrzej .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 :589-622
[10]   ON EXTREMA OF STABLE PROCESSES [J].
Kuznetsov, Alexey .
ANNALS OF PROBABILITY, 2011, 39 (03) :1027-1060