Adaptive Synchronization Of Uncertain Fractional-Order Chaotic Triangular Systems Via Fuzzy Backstepping Control

被引:0
作者
Boubellouta, A. [1 ]
Boulkroune, A. [1 ]
机构
[1] Univ Jijel, LAJ, BP 98, Ouled Aissa 18000, Jijel, Algeria
来源
2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019) | 2019年
关键词
Fuzzy adaptive control; adaptive backstepping control; fractional-order chaotic systems; fractional Lyapunov stability; SLIDING MODE CONTROL; LYAPUNOV FUNCTIONS; OBSERVER DESIGN;
D O I
10.1109/codit.2019.8820496
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new fractional fuzzy adaptive backstepping control scheme is investigated for projective synchronizing a class of uncertain chaotic master-slave systems. These systems are assumed to be with fractional-order and subject to uncertainties and external disturbances. In the design process, the uncertain nonlinear functions are online modeled via fuzzy logic systems, and the virtual control terms are adequately determined based on the fractional Lyapunov stability. The proposed fuzzy adaptive backstepping controller ensures the stability of the closed-loop system as well as the convergence of the underlying synchronization error. Numerical simulations illustrate well the performances of the proposed approach.
引用
收藏
页码:2004 / 2009
页数:6
相关论文
共 26 条
  • [1] Lyapunov functions for fractional order systems
    Aguila-Camacho, Norelys
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2951 - 2957
  • [2] [Anonymous], 2017, CHINESE PHYS B
  • [3] Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems
    Bigdeli, Nooshin
    Ziazi, Hossein Alinia
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (01): : 160 - 183
  • [4] Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems
    Boroujeni, Elham Amini
    Momeni, Hamid Reza
    [J]. SIGNAL PROCESSING, 2012, 92 (10) : 2365 - 2370
  • [5] Boubellouta A., 2018, SOFT COMPUT, P1
  • [6] How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems
    Boulkroune, A.
    Tadjine, M.
    M'Saad, M.
    Farza, M.
    [J]. FUZZY SETS AND SYSTEMS, 2008, 159 (08) : 926 - 948
  • [7] Adaptive fuzzy vector control for a doubly-fed induction motor
    Bounar, N.
    Boulkroune, A.
    Boudjema, F.
    M'Saad, M.
    Farza, M.
    [J]. NEUROCOMPUTING, 2015, 151 : 756 - 769
  • [8] Bouzeriba A, 2016, STUD COMPUT INTELL, V636, P363, DOI 10.1007/978-3-319-30279-9_15
  • [9] Bouzeriba A, 2015, INT C CONTROL ENG IN, V3, P1
  • [10] Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems
    Duarte-Mermoud, Manuel A.
    Aguila-Camacho, Norelys
    Gallegos, Javier A.
    Castro-Linares, Rafael
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 650 - 659