A Machine Learning Approach to the Classification of Acute Leukemias and Distinction From Nonneoplastic Cytopenias Using Flow Cytometry Data

被引:18
作者
Monaghan, Sara A. [1 ,2 ]
Li, Jeng-Lin [3 ]
Liu, Yen-Chun [1 ,4 ]
Ko, Ming-Ya [3 ]
Boyiadzis, Michael [5 ,6 ]
Chang, Ting-Yu [7 ]
Wang, Yu-Fen [7 ]
Lee, Chi-Chun [3 ]
Swerdlow, Steven H. [1 ,2 ]
Ko, Bor-Sheng [8 ,9 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA 15213 USA
[2] UPMC Presbyterian, Pittsburgh, PA 15213 USA
[3] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
[4] St Jude Childrens Res Hosp, Dept Pathol, Memphis, TN USA
[5] Univ Pittsburgh, Sch Med, Dept Med, Pittsburgh, PA 15213 USA
[6] UPMC Hillman Canc Ctr, Pittsburgh, PA USA
[7] AHEAD Med, Taipei, Taiwan
[8] Natl Taiwan Univ, Dept Hematol Oncol, Canc Ctr, Taipei, Taiwan
[9] Natl Taiwan Univ Hosp, Dept Internal Med, Taipei, Taiwan
关键词
Machine learning; Flow cytometry; Acute promyelocytic leukemia; Acute myeloid leukemia; B-cell lymphoblastic leukemia; lymphoma; AUGMENTED HUMAN INTELLIGENCE; DISEASE;
D O I
10.1093/ajcp/aqab148
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Objectives Flow cytometry (FC) is critical for the diagnosis and monitoring of hematologic malignancies. Machine learning (ML) methods rapidly classify multidimensional data and should dramatically improve the efficiency of FC data analysis. We aimed to build a model to classify acute leukemias, including acute promyelocytic leukemia (APL), and distinguish them from nonneoplastic cytopenias. We also sought to illustrate a method to identify key FC parameters that contribute to the model's performance. Methods Using data from 531 patients who underwent evaluation for cytopenias and/or acute leukemia, we developed an ML model to rapidly distinguish among APL, acute myeloid leukemia/not APL, acute lymphoblastic leukemia, and nonneoplastic cytopenias. Unsupervised learning using gaussian mixture model and Fisher kernel methods were applied to FC listmode data, followed by supervised support vector machine classification. Results High accuracy (ACC, 94.2%; area under the curve [AUC], 99.5%) was achieved based on the 37-parameter FC panel. Using only 3 parameters, however, yielded similar performance (ACC, 91.7%; AUC, 98.3%) and highlighted the significant contribution of light scatter properties. Conclusions Our findings underscore the potential for ML to automatically identify and prioritize FC specimens that have critical results, including APL and other acute leukemias.
引用
收藏
页码:546 / 553
页数:8
相关论文
共 26 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]   Combining Mixture Components for Clustering [J].
Baudry, Jean-Patrick ;
Raftery, Adrian E. ;
Celeux, Gilles ;
Lo, Kenneth ;
Gottardo, Raphael .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (02) :332-353
[3]   Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children's Oncology Group study AALL0232 [J].
Borowitz, Michael J. ;
Wood, Brent L. ;
Devidas, Meenakshi ;
Loh, Mignon L. ;
Raetz, Elizabeth A. ;
Salzer, Wanda L. ;
Nachman, James B. ;
Carroll, Andrew J. ;
Heerema, Nyla A. ;
Gastier-Foster, Julie M. ;
Willman, Cheryl L. ;
Dai, Yunfeng ;
Winick, Naomi J. ;
Hunger, Stephen P. ;
Carroll, William L. ;
Larsen, Eric .
BLOOD, 2015, 126 (08) :964-971
[4]   Current trends in flow cytometry automated data analysis software [J].
Cheung, Melissa ;
Campbell, Jonathan J. ;
Whitby, Liam ;
Thomas, Robert J. ;
Braybrook, Julian ;
Petzing, Jon .
CYTOMETRY PART A, 2021, 99 (10) :1007-1021
[5]   Flow cytometric immunophenotyping for hematologic neoplasms [J].
Craig, Fiona E. ;
Foon, Kenneth A. .
BLOOD, 2008, 111 (08) :3941-3967
[6]   Computational analysis of flow cytometry data in hematological malignancies: future clinical practice? [J].
Duetz, Carolien ;
Bachas, Costa ;
Westers, Theresia M. ;
van de Loosdrecht, Arjan A. .
CURRENT OPINION IN ONCOLOGY, 2020, 32 (02) :162-169
[7]   OpenCyto: An Open Source Infrastructure for Scalable, Robust, Reproducible, and Automated, End-to-End Flow Cytometry Data Analysis [J].
Finak, Greg ;
Frelinger, Jacob ;
Jiang, Wenxin ;
Newell, Evan W. ;
Ramey, John ;
Davis, Mark M. ;
Kalams, Spyros A. ;
De Rosa, Stephen C. ;
Gottardo, Raphael .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
[8]   Use of Internal Control T-Cell Populations in the Flow Cytometric Evaluation for T-Cell Neoplasms [J].
Hunt, Alicia M. ;
Shallenberger, Wendy ;
Ten Eyck, Stephen P. ;
Craig, Fiona E. .
CYTOMETRY PART B-CLINICAL CYTOMETRY, 2016, 90 (05) :404-414
[9]   Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome [J].
Ko, Bor-Sheng ;
Wang, Yu-Fen ;
Li, Jeng-Lin ;
Li, Chi-Cheng ;
Weng, Pei-Fang ;
Hsu, Szu-Chun ;
Hou, Hsin-An ;
Huang, Huai-Hsuan ;
Yao, Ming ;
Lin, Chien-Ting ;
Liu, Jia-Hau ;
Tsai, Cheng-Hong ;
Huang, Tai-Chung ;
Wu, Shang-Ju ;
Huang, Shang-Yi ;
Chou, Wen-Chien ;
Tien, Hwei-Fang ;
Lee, Chi-Chun ;
Tang, Jih-Luh .
EBIOMEDICINE, 2018, 37 :91-100
[10]   Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials [J].
Lahuerta, Juan-Jose ;
Paiva, Bruno ;
Vidriales, Maria-Belen ;
Cordon, Lourdes ;
Cedena, Maria-Teresa ;
Puig, Noemi ;
Martinez-Lopez, Joaquin ;
Rosinol, Laura ;
Gutierrez, Norma C. ;
Martin-Ramos, Maria-Luisa ;
Oriol, Albert ;
Teruel, Ana-Isabel ;
Echeveste, Maria-Asuncion ;
de Paz, Raquel ;
de Arriba, Felipe ;
Hernandez, Miguel T. ;
Palomera, Luis ;
Martinez, Rafael ;
Martin, Alejandro ;
Alegre, Adrian ;
De la Rubia, Javier ;
Orfao, Alberto ;
Mateos, Maria-Victoria ;
Blade, Joan ;
San-Miguel, Jesus F. .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (25) :2900-+