Exploiting Microphase-Separated Morphologies of Side-Chain Liquid Crystalline Polymer Networks for Triple Shape Memory Properties

被引:92
作者
Ahn, Suk-kyun [1 ]
Kasi, Rajeswari M. [1 ,2 ]
机构
[1] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
shape-memory materials; liquid crystals; structure-property relationships; polymeric materials; actuators; COMPOSITES; ELASTOMERS;
D O I
10.1002/adfm.201101369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a new strategy to achieve triple shape memory properties by using side-chain liquid crystalline (SCLC) type random terpolymer networks (XL- TP-n), where n is the length of flexible methylene spacer (n = 5, 10, and 15) to link backbone and mesogen. A lower glass transition temperature (Tg = Tlow) and a higher liquid crystalline clearing temperature (Tcl = Thigh) of XL-TP-n serve as molecular switches to trigger a shape memory effect (SME). Two different triple shape creation procedures (TSCPs), thermomechanical treatments to obtain temporary shapes prior to the proceeding recovery step, are used to investigate the triple shape memory behavior of XL-TP-n. The discrete Tg and Tcl as well as unique microphase-separated morphologies (backbone-rich and mesogen-rich domains) within smectic layers of XL-TP-n enables triple shape memory properties. Motional decoupling between backbone-rich and mesogen-rich domains is also critical to determine the resulting macroscopic shape memory properties. Our strategy for obtaining triple shape memory properties will pave the way for exploiting a broad range of SCLC polymers to develop a new class of actively moving polymers.
引用
收藏
页码:4543 / 4549
页数:7
相关论文
共 28 条
[1]   Self-assembled shape-memory fibers of triblock liquid-crystal polymers [J].
Ahir, SV ;
Tajbakhsh, AR ;
Terentjev, EM .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (04) :556-560
[2]   Side-Chain Liquid Crystalline Polymer Networks: Exploiting Nanoscale Smectic Polymorphism To Design Shape-Memory Polymers [J].
Ahn, Suk-Kyun ;
Deshmukh, Prashant ;
Gopinadhan, Manesh ;
Osuji, Chinedum O. ;
Kasi, Rajeswari M. .
ACS NANO, 2011, 5 (04) :3085-3095
[3]   Shape Memory Behavior of Side-Chain Liquid Crystalline Polymer Networks Triggered by Dual Transition Temperatures [J].
Ahn, Suk-kyun ;
Deshmukh, Prashant ;
Kasi, Rajeswari M. .
MACROMOLECULES, 2010, 43 (17) :7330-7340
[4]   Multifunctional Shape-Memory Polymers [J].
Behl, Marc ;
Razzaq, Muhammad Yasar ;
Lendlein, Andreas .
ADVANCED MATERIALS, 2010, 22 (31) :3388-3410
[5]   Triple-shape polymers [J].
Behl, Marc ;
Lendlein, Andreas .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (17) :3335-3345
[6]   One-Step Process for Creating Triple-Shape Capability of AB Polymer Networks [J].
Behl, Marc ;
Bellin, Ingo ;
Kelch, Steffen ;
Wagermaier, Wolfgang ;
Lendlein, Andreas .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (01) :102-108
[7]   Polymeric triple-shape materials [J].
Bellin, I. ;
Kelch, S. ;
Langer, R. ;
Lendlein, A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (48) :18043-18047
[8]   Soft shape memory in main-chain liquid crystalline elastomers [J].
Burke, Kelly A. ;
Mather, Patrick T. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (17) :3449-3457
[9]   Significant Impact of Thermo-Mechanical Conditions on Polymer Triple-Shape Memory Effect [J].
Li, Junjun ;
Xie, Tao .
MACROMOLECULES, 2011, 44 (01) :175-180
[10]   An artificial muscle with lamellar structure based on a nematic triblock copolymer [J].
Li, MH ;
Keller, P ;
Yang, JY ;
Albouy, PA .
ADVANCED MATERIALS, 2004, 16 (21) :1922-+