Existence of periodic solutions of planar systems

被引:0
|
作者
Yang, XJ [1 ]
机构
[1] Tsing Hua Univ, Dept Math, Beijing 1000084, Peoples R China
关键词
periodic solutions; planar system; Fucik spectrum;
D O I
10.1016/j.camwa.2004.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of periodic solutions for the following nonlinear asymmetric oscillator, x ' = a(+)y(+) - a(-)y(-) + f (x, y, t), y ' = -b(+)x(+) + b(-)x(-) + g (x, y, t), is discussed, where a(+/-), b(+/-) are positive constants satisfying 1/root a(+)b(+) + 1/root a(+)b(-) + 1/root a(-)b(+) + 1/root a(-)b(-) = 4m/n. x(+/-) = max{+/- x,0}, y(+/-) = max{+/- y,0}, m, n is an element of N, f(x, y, t), g(x, y, t) are bounded, locally Lipschitz functions of x, y for fixed t is an element of [0, 2 pi], 2 pi-periodic in t, and the following limits exist lim/x,y ->+/-infinity f (x, y, t) =: F +/-,+/- (t), lim/x,y ->+/-infinity g (x, y, t) =: G +/-,+/- (t). (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:645 / 652
页数:8
相关论文
共 50 条
  • [1] Existence of periodic solutions of a class of planar systems
    Yang, XJ
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2006, 25 (02): : 237 - 248
  • [2] Periodic planar systems without periodic solutions
    Zoła̧dek H.
    Qualitative Theory of Dynamical Systems, 2001, 2 (1) : 45 - 60
  • [3] A simple geometrical condition for the existence of periodic solutions of planar periodic systems. Applications to some biological models
    Marva, M.
    Alcazar, J. G.
    Poggiale, J. -C.
    Bravo de la Parra, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1469 - 1479
  • [4] Coexistence of Unbounded Solutions and Periodic Solutions of a Class of Planar Systems with Asymmetric Nonlinearities
    Liu, Qihuai
    Sun, Xiying
    Qian, Dingbian
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (04) : 577 - 591
  • [5] Existence of periodic solutions of sublinear Hamiltonian systems
    Wei Ding
    Ding Bian Qian
    Chao Wang
    Zhi Guo Wang
    Acta Mathematica Sinica, English Series, 2016, 32 : 621 - 632
  • [6] Existence of Periodic Solutions of Sublinear Hamiltonian Systems
    Wei DING
    Ding Bian QIAN
    Chao WANG
    Zhi Guo WANG
    Acta Mathematica Sinica,English Series, 2016, (05) : 621 - 632
  • [7] Existence of Periodic Solutions of Sublinear Hamiltonian Systems
    Ding, Wei
    Qian, Ding Bian
    Wang, Chao
    Wang, Zhi Guo
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (05) : 621 - 632
  • [8] On existence of periodic solutions for gradient systems with applications
    Boussandel, Sahbi
    Mhemdi, Hanen
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (02): : 300 - 316
  • [9] Periodic solutions for planar autonomous systems with nonsmooth periodic perturbations
    Makarenkov, Oleg
    Nistri, Paolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1401 - 1417
  • [10] Periodic solutions to superlinear planar Hamiltonian systems
    Boscaggin, Alberto
    PORTUGALIAE MATHEMATICA, 2012, 69 (02) : 127 - 140