A Multi-path Neural Network for Hyperspectral Image Super-Resolution

被引:0
作者
Zhang, Jing [1 ,2 ,3 ]
Wan, Zekang [2 ]
Shao, Minhao [2 ]
Li, Yunsong [1 ,2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
[3] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
来源
IMAGE AND GRAPHICS (ICIG 2021), PT III | 2021年 / 12890卷
关键词
Super-resolution; Multi-path architecture; Attention mechanism; Hyperspectral image;
D O I
10.1007/978-3-030-87361-5_31
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The resolution of hyperspectral remote sensing images is largely limited by the cost and commercialization requirements of remote sensing satellites. Existing super-resolution methods for improving the spatial resolution of images cannot well integrate the correlation between spectral segments and the problem of excessive network parameters caused by high-dimensional characteristics. This paper studies a multipath-based residual feature learning method, which simplifies each part of the network into several simple and effective network modules to learn the spatial spectral features between different spectral segments. Through the designed multi-scale feature generation method based on wavelet transform and spatial attention mechanism, the non-linear mapping ability for features is effectively improved. The verification of three general hyperspectral data sets proves the superiority of this method compared with the existing hyperspectral SR methods.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 27 条
  • [1] Dai S., 2007, Computer Vision and Pattern Recognition, P1
  • [2] Second-order Attention Network for Single Image Super-Resolution
    Dai, Tao
    Cai, Jianrui
    Zhang, Yongbing
    Xia, Shu-Tao
    Zhang, Lei
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11057 - 11066
  • [3] Darweesh Muna, 2019, 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), P578, DOI 10.1109/ICIVC47709.2019.8981118
  • [4] Accelerating the Super-Resolution Convolutional Neural Network
    Dong, Chao
    Loy, Chen Change
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 391 - 407
  • [5] Goetzke R., 2008, IGARSS 2008 2008 IEE, V4, pIV
  • [6] Deep Back-Projection Networks For Super-Resolution
    Haris, Muhammad
    Shakhnarovich, Greg
    Ukita, Norimichi
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1664 - 1673
  • [7] HOU HS, 1978, IEEE T ACOUST SPEECH, V26, P508
  • [8] Hyperspectral Image Super-Resolution via Intrafusion Network
    Hu, Jing
    Jia, Xiuping
    Li, Yunsong
    He, Gang
    Zhao, Minghua
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7459 - 7471
  • [9] Toward Efficient Land Cover Mapping: An Overview of the National Land Representation System and Land Cover Map 2015 of Bangladesh
    Jalal, Rashed
    Iqbal, Zaheer
    Henry, Matieu
    Franceschini, Gianluca
    Islam, Mohammad S.
    Akhter, Mariam
    Khan, Zarin T.
    Hadi, Mohammad A.
    Hossain, Mohammed A.
    Mahboob, M. Golam
    Udita, Tasnuva S.
    Aziz, Tariq
    Masum, Syed M.
    Costello, Liam
    Saha, Champa R.
    Chowdhury, Abdullah A. M.
    Salam, Abdus
    Shahrin, Farzana
    Sumon, Fazle R.
    Rahman, Mahbubur
    Siddique, Mohammad A.
    Rahman, Mohammad M.
    Jahan, Md N.
    Shaunak, Mir F.
    Rahman, Mohammad S.
    Islam, Mohammad R.
    Mosca, Nicola
    D'Annunzio, Remi
    Hira, Shrabanti
    Di Gregorio, Antonio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (10) : 3852 - 3861
  • [10] Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.182, 10.1109/CVPR.2016.181]