High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures

被引:87
作者
Zhao, Kunpeng [1 ,2 ]
Zhu, Chenxi [1 ,2 ]
Qiu, Pengfei [1 ]
Blichfeld, Anders B. [3 ,4 ,5 ]
Eikeland, Espen [3 ,4 ,6 ]
Ren, Dudi [1 ]
Iversen, Bo B. [3 ,4 ]
Xu, Fangfang [1 ]
Shi, Xun [1 ]
Chen, Lidong [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Aarhus Univ, Dept Chem, Ctr Mat Crystallog, Langelandsgade 140, DK-8000 Aarhus C, Denmark
[4] Aarhus Univ, iNANO, Langelandsgade 140, DK-8000 Aarhus C, Denmark
[5] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[6] Ctr Nano Prod & Micro Anal, Danish Technol Inst, DK-2630 Taastrup, Denmark
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Thermoelectric; Mosaic structure; Solid solution; Thermal conductivity; Electrical conductivity; BULK; ENERGY; FIGURE; FILMS; MERIT;
D O I
10.1016/j.nanoen.2017.10.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mosaic-crystal microstructure is one of the optimal strategies for decoupling and balancing thermal and electrical transport properties in thermoelectric materials. Herein, we successfully achieve the desired nanoscale mosaic structures in triple-component Cu2-yS1/3Se1/3Te1/3 solid solutions using Cu2S, Cu2Se, and Cu2Te matrix compounds. They are solved in hexagonal structures with space group R (3) over barm by means of single crystal structural solution and Rietveld refinement. Electron backscatter diffraction measurements show that all the samples are polycrystalline compounds with the grain size in the range of micrometers. However, transmission electron microscopic study reveals that these microscale grains are quasi-single crystals consist of a variety of 10-30 nm mosaic grains. Each mosaic grain is a perfect crystal but titled or rotated with respect to others by a very small angle. In this case, excellent electrical transports are maintained but exceptional low thermal conductivity is achieved throughout the whole temperature range, which is attributed to the combined phonon scatterings by point defects, liquid-like copper ions, and lattice strains or interfaces of mosaic nanograins. Combining all these favorable factors, remarkably high thermoelectric performance is achieved in Cu1.98S1/3Se1/3Te1/3 with a maximum zT of 1.9 at 1000 K.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 45 条
[1]   A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials [J].
Alam, Hilaal ;
Ramakrishna, Seeram .
NANO ENERGY, 2013, 2 (02) :190-212
[2]  
[Anonymous], 2005, THERMAL CONDUCTIVITY
[3]  
[Anonymous], Introduction to Thermoelectricity', DOI DOI 10.1007/978-3-642-00716-3
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[6]  
Chakrabarti D. J., 1983, Bulletin of Alloy Phase Diagrams, V4, P254, DOI [10.1007/BF02868665, DOI 10.1007/BF02868665]
[7]   The reflexion of X-rays from imperfect crystals [J].
Darwin, CG .
PHILOSOPHICAL MAGAZINE, 1922, 43 (257) :800-829
[8]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[9]   Theory of enhancement of thermoelectric properties of materials with nanoinclusions [J].
Faleev, Sergey V. ;
Leonard, Francois .
PHYSICAL REVIEW B, 2008, 77 (21)
[10]   Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials [J].
Fu, Chenguang ;
Bai, Shengqiang ;
Liu, Yintu ;
Tang, Yunshan ;
Chen, Lidong ;
Zhao, Xinbing ;
Zhu, Tiejun .
NATURE COMMUNICATIONS, 2015, 6