An investigation of circadian rhythm in Escherichia coli

被引:6
作者
Wen, Yang [1 ]
Zhou, Wei [2 ]
Zhu, Xinxin [3 ]
Cheng, Shuting [4 ]
Xiao, Guoguang [1 ]
Li, Yiyuan [1 ]
Zhu, Yu [1 ]
Wang, Zhengrong [3 ]
Wan, Chaomin [1 ]
机构
[1] Sichuan Univ, West China Hosp 2, Dept Pediat, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp 2, Dept Clin Lab, Chengdu 610041, Peoples R China
[3] Xian Childrens Hosp, Dept Pediat, Xian 710003, Shanxi, Peoples R China
[4] Sichuan Univ, Coll Basic Med & Forens Med, Minist Hlth, Key Lab Chronobiol, Chengdu 610041, Peoples R China
关键词
circadian rhythm; specific growth rate; prokaryote; Escherichia coli; COLORIMETRIC ASSAY; GENE-EXPRESSION; GROWTH; CLOCK; PROKARYOTES; BIOLOGY; ORIGIN;
D O I
10.1080/09291016.2015.1052650
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Persuasive evidence for circadian programs in non-photosynthetic bacteria other than cyanobacteria is still lacking, we aimed to investigate the circadian rhythm of specific growth rate in Escherichia coli ATCC 25922, one of the important prokaryotes. Methods: To grow E. coli under different light and dark conditions. When the growth entered into the stationary phase, we stopped the culture and obtained the viable counts by MTT assay every 3h. The specific growth rates (SGRs) were calculated and analyzed with cosinor method for potential rhythms. Results: Single cosinor method revealed that the SGR of E. coli displayed rhythmic variations with a period of around 24h both under light/dark cycles and under constant darkness. The best-fitting periods and best-fitting cosine curves were acquired. Conclusions: The SGR of E. coli (ATCC 25922) in a culture medium with limiting substrates in the stationary and death phases displayed rhythmic variations with a period of around 24h under light/dark cycles and constant darkness conditions.
引用
收藏
页码:753 / 762
页数:10
相关论文
共 30 条
[1]   Direct colorimetric assay for rapid detection of rifampin-resistant Mycobacterium tuberculosis [J].
Abate, G ;
Aseffa, A ;
Selassie, A ;
Goshu, S ;
Fekade, B ;
WoldeMeskal, D ;
Miörner, H .
JOURNAL OF CLINICAL MICROBIOLOGY, 2004, 42 (02) :871-+
[2]   Circadian rhythm of the cyanobacterium Synechocystis sp. Strain PCC 6803 in the dark [J].
Aoki, S ;
Kondo, T ;
Wada, H ;
Ishiura, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5751-5755
[3]  
Berridge MV, 2005, BIOTECHNOL ANN REV, V11, P127, DOI 10.1016/S1387-2656(05)11004-7
[4]   CIRCADIAN-RHYTHM IN AMINO-ACID-UPTAKE BY SYNECHOCOCCUS RF-1 [J].
CHEN, TH ;
CHEN, TL ;
HUNG, LM ;
HUANG, TC .
PLANT PHYSIOLOGY, 1991, 97 (01) :55-59
[5]  
Cornelissen G., 2005, Encyclopedia of Biostatistics, V2nd, P796
[6]   Origin and evolution of circadian clock genes in prokaryotes [J].
Dvornyk, V ;
Vinogradova, O ;
Nevo, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2495-2500
[7]   Peroxiredoxins are conserved markers of circadian rhythms [J].
Edgar, Rachel S. ;
Green, Edward W. ;
Zhao, Yuwei ;
van Ooijen, Gerben ;
Olmedo, Maria ;
Qin, Ximing ;
Xu, Yao ;
Pan, Min ;
Valekunja, Utham K. ;
Feeney, Kevin A. ;
Maywood, Elizabeth S. ;
Hastings, Michael H. ;
Baliga, Nitin S. ;
Merrow, Martha ;
Millar, Andrew J. ;
Johnson, Carl H. ;
Kyriacou, Charalambos P. ;
O'Neill, John S. ;
Reddy, Akhilesh B. .
NATURE, 2012, 485 (7399) :459-U65
[8]   MOLECULAR MODELS FOR CIRCADIAN CLOCK .1. CHRONON CONCEPT [J].
EHRET, CF ;
TRUCCO, E .
JOURNAL OF THEORETICAL BIOLOGY, 1967, 15 (02) :240-+
[9]  
GROBBELAAR N, 1986, FEMS MICROBIOL LETT, V37, P173, DOI 10.1111/j.1574-6968.1986.tb01788.x
[10]   Structure-based Insights into the Catalytic Power and Conformational Dexterity of Peroxiredoxins [J].
Hall, Andrea ;
Nelson, Kimberly ;
Poole, Leslie B. ;
Karplus, P. Andrew .
ANTIOXIDANTS & REDOX SIGNALING, 2011, 15 (03) :795-815