Convergence, unanimity and disagreement in majority dynamics on unimodular graphs and random graphs

被引:32
|
作者
Benjamini, Itai [1 ]
Chan, Siu-On [3 ]
O'Donnell, Ryan [2 ]
Tamuz, Omer [3 ]
Tan, Li-Yang [4 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, IL-76100 Rehovot, Israel
[2] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[3] Microsoft Res New England, Cambridge, England
[4] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
关键词
Majority dynamics; Random graphs; INFINITE-GRAPHS;
D O I
10.1016/j.spa.2016.02.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In majority dynamics, agents located at the vertices of an undirected simple graph update their binary opinions synchronously by adopting those of the majority of their neighbors. On infinite unimodular transitive graphs we show that the opinion of each agent almost surely either converges, or else eventually oscillates with period two; this is known to hold for finite graphs, but not for all infinite graphs. On Erdos-Renyi random graphs with degrees Omega(root n), we show that agents eventually all agree, with constant probability. Conversely, on random 4-regular finite graphs, we show that with high probability different agents converge to different opinions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2719 / 2733
页数:15
相关论文
共 50 条
  • [21] GRIDS IN RANDOM GRAPHS
    DELAVEGA, WF
    MANOUSSAKIS, Y
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (02) : 329 - 336
  • [22] On the hyperbolicity of random graphs
    Mitsche, Dieter
    Pralat, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02)
  • [23] Logconcave Random Graphs
    Frieze, Alan
    Vempala, Santosh
    Vera, Juan
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 779 - +
  • [24] Swarming on Random Graphs
    James von Brecht
    Theodore Kolokolnikov
    Andrea L. Bertozzi
    Hui Sun
    Journal of Statistical Physics, 2013, 151 : 150 - 173
  • [25] Addressing Johnson Graphs, Complete Multipartite Graphs, Odd Cycles, and Random Graphs
    Alon, Noga
    Cioaba, Sebastian M.
    Gilbert, Brandon D.
    Koolen, Jack H.
    McKay, Brendan D.
    EXPERIMENTAL MATHEMATICS, 2021, 30 (03) : 372 - 382
  • [26] Chasing a Fast Robber on Planar Graphs and Random Graphs
    Alon, Noga
    Mehrabian, Abbas
    JOURNAL OF GRAPH THEORY, 2015, 78 (02) : 81 - 96
  • [27] UNIVERSALITY OF RANDOM GRAPHS FOR GRAPHS OF MAXIMUM DEGREE TWO
    Kim, Jeong Han
    Lee, Sang June
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1467 - 1478
  • [28] Swarming on Random Graphs
    von Brecht, James
    Kolokolnikov, Theodore
    Bertozzi, Andrea L.
    Sun, Hui
    JOURNAL OF STATISTICAL PHYSICS, 2013, 151 (1-2) : 150 - 173
  • [29] k-planar crossing number of random graphs and random regular graphs
    Asplund, John
    Do, Thao
    Hamm, Arran
    Szekely, Laszlo
    Taylor, Libby
    Wang, Zhiyu
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 419 - 422
  • [30] Averaging dynamics, mortal random walkers and information aggregation on graphs
    Sikder, Orowa
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (04):