Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples

被引:239
作者
Austin, Peter C. [1 ,2 ,3 ]
机构
[1] Inst Clin Evaluat Sci, Toronto, ON M4N 3M5, Canada
[2] Univ Toronto, Dept Hlth Management Policy & Evaluat, Toronto, ON, Canada
[3] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
propensity score; propensity-score matching; risk difference; absolute risk reduction; Monte Carlo simulations; statistical inference; hypothesis testing; type I error rate; categorical data analysis; PERFORMANCE; PROPORTIONS;
D O I
10.1002/sim.4200
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Propensity-score matching allows one to reduce the effects of treatment-selection bias or confounding when estimating the effects of treatments when using observational data. Some authors have suggested that methods of inference appropriate for independent samples can be used for assessing the statistical significance of treatment effects when using propensity-score matching. Indeed, many authors in the applied medical literature use methods for independent samples when making inferences about treatment effects using propensity-score matched samples. Dichotomous outcomes are common in healthcare research. In this study, we used Monte Carlo simulations to examine the effect on inferences about risk differences (or absolute risk reductions) when statistical methods for independent samples are used compared with when statistical methods for paired samples are used in propensity-score matched samples. We found that compared with using methods for independent samples, the use of methods for paired samples resulted in: (i) empirical type I error rates that were closer to the advertised rate; (ii) empirical coverage rates of 95 per cent confidence intervals that were closer to the advertised rate; (iii) narrower 95 per cent confidence intervals; and (iv) estimated standard errors that more closely reflected the sampling variability of the estimated risk difference. Differences between the empirical and advertised performance of methods for independent samples were greater when the treatment-selection process was stronger compared with when treatment-selection process was weaker. We recommend using statistical methods for paired samples when using propensity-score matched samples for making inferences on the effect of treatment on the reduction in the probability of an event occurring. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1292 / 1301
页数:10
相关论文
共 18 条