The view-obstruction problem for n-dimensional cubes

被引:13
作者
Chen, YG [1 ]
Cusick, TW [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jnth.1998.2309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The view-obstruction problem for the n-dimensional cube is equivalent to the conjecture that for any n positive integers upsilon(1), ..., upsilon(n) there is a real number x such that each \\upsilon(i)x\\ greater than or equal to (n+l)(-1) (here \\y\\ denotes the distance from y to the nearest integer). This conjecture has been previously solved for n less than or equal to 4. In this paper we prove that when 2n-3 is a prime and n greater than or equal to 4 we can find a real number a which gives each \\upsilon(i)x\\ greater than or equal to 1/(2n - 3). In fact more than this is proved. (C) 1999 Academic Press.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 13 条
[1]   LOWER BOUNDS FOR 2 DIOPHANTINE APPROXIMATION FUNCTIONS [J].
BETKE, U ;
WILLS, JM .
MONATSHEFTE FUR MATHEMATIK, 1972, 76 (03) :214-&
[2]   Flows, view obstructions, and the lonely runner [J].
Bienia, W ;
Goddyn, L ;
Gvozdjak, P ;
Sebo, A ;
Tarsi, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 72 (01) :1-9
[3]  
Chen Y.G., 1990, ACTA MATH SIN, V33, P712
[4]  
Chen Y.G., 1994, ACTA MATH SIN, V37, P551
[5]   ON A CONJECTURE IN DIOPHANTINE APPROXIMATIONS .3. [J].
CHEN, YG .
JOURNAL OF NUMBER THEORY, 1991, 39 (01) :91-103
[6]   ON A CONJECTURE IN DIOPHANTINE APPROXIMATIONS .2. [J].
CHEN, YG .
JOURNAL OF NUMBER THEORY, 1991, 37 (02) :181-198
[7]   ON A CONJECTURE IN DIOPHANTINE APPROXIMATIONS .4. [J].
CHEN, YG .
JOURNAL OF NUMBER THEORY, 1993, 43 (02) :186-197
[8]  
Cusick T. W., 1974, Journal of Combinatorial Theory, Series A, V16, P1, DOI 10.1016/0097-3165(74)90066-1
[9]   VIEW-OBSTRUCTION PROBLEMS .3. [J].
CUSICK, TW ;
POMERANCE, C .
JOURNAL OF NUMBER THEORY, 1984, 19 (02) :131-139
[10]   VIEW-OBSTRUCTION PROBLEMS .2. [J].
CUSICK, TW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 84 (01) :25-28