Necessary and sufficient conditions for the inversion of linearly-perturbed bounded linear operators on Banach space using Laurent series

被引:7
作者
Albrecht, Amie R. [1 ]
Howlett, Phil G. [1 ]
Pearce, Charles E. M. [2 ]
机构
[1] Univ S Australia, Ctr Ind & Appl Math, Mawson Lakes, Australia
[2] Univ Adelaide, Sch Math Sci, Adelaide, SA, Australia
基金
澳大利亚研究理事会;
关键词
Banach space; Complementary subspaces; Linear perturbation; Bounded linear operators; Laurent series; ANALYTIC MATRIX FUNCTIONS; HAMILTONIAN CYCLES; ORIGIN; PROGRAMS; SYSTEMS;
D O I
10.1016/j.jmaa.2011.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a Laurent series representation, we present a detailed discussion of necessary and sufficient conditions for the inversion of linearly-perturbed bounded linear operators on Banach space that are singular in the unperturbed state. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 20 条
[1]   Inversion of analytic matrix functions that are singular at the origin [J].
Avrachenkov, KE ;
Haviv, M ;
Howlett, PG .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) :1175-1189
[2]  
Ben-Israel Adi, 1974, GEN INVERSE THEORY A
[3]   Asymptotic analysis of perturbed mathematical programs [J].
Coulomb, JM ;
Filar, JA ;
Szczechla, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (01) :132-156
[4]   Hamiltonian cycles and singularly perturbed Markov chains [J].
Ejov, V ;
Filar, JA ;
Nguyen, MT .
MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (01) :114-131
[5]   Geometric interpretation of Hamiltonian cycles problem via singularly perturbed Markov decision processes [J].
Ejov, V ;
Filar, JA ;
Thredgold, J .
OPTIMIZATION, 2003, 52 (4-5) :441-458
[6]   Cesaro limits of analytically perturbed stochastic matrices [J].
Filar, J ;
Krieger, HA ;
Syed, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 353 (1-3) :227-243
[7]   An asymptotic simplex method for singularly perturbed linear programs [J].
Filar, JA ;
Altman, E ;
Avrachenkov, KE .
OPERATIONS RESEARCH LETTERS, 2002, 30 (05) :295-307
[8]  
Gohberg I, 2006, CLASS APPL MATH, V51, P1, DOI 10.1137/1.9780898719093
[9]   ON THE LOCAL THEORY OF REGULAR ANALYTIC MATRIX FUNCTIONS [J].
GOHBERG, I ;
KAASHOEK, MA ;
VANSCHAGEN, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 182 :9-25
[10]  
Gohberg I., 1990, Classes of Linear Operators, DOI [10.1007/978-3-0348-7509-7, DOI 10.1007/978-3-0348-7509-7]