A Compliant Five-Bar Legged Mechanism for Heavy-Load Legged Robots by Using Magneto-Rheological Actuators
被引:0
|
作者:
Chen, Guangzeng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R China
Chen, Guangzeng
[1
]
Ran, Jiangtao
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R China
Ran, Jiangtao
[1
]
Bai, Chenguang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R China
Bai, Chenguang
[1
]
Jie, Pengyu
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R China
Jie, Pengyu
[1
]
Lou, Yunjiang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R China
Lou, Yunjiang
[1
]
机构:
[1] Harbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, State Key Lab Robot & Syst, Shenzhen 518055, Peoples R China
来源:
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
|
2021年
关键词:
DESIGN;
HYSTERESIS;
D O I:
10.1109/IROS51168.2021.9636256
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In this paper, a compliant five-bar leg mechanism is proposed, designed and manufactured for heavy-load legged robots, by using two magneto-rheological actuators (MRAs) that are capable of offering a maximal torque of 78Nm. To address the rate-dependent hysteresis of the MRA, a hybrid rate-dependent hysteresis model is derived based on the idea of mappings between different hysteresis loops. With integrating the classical Preisach model and the NARX neural network, the hybrid model is able to model hysteresis nonlinearity of the magneto-rheological clutch (MRC). It is then used to estimate and control the output torque of the MRA at the absent of external force/torque sensors. High fidelity force control and variable compliance of the leg mechanism are realized and validated in various experiments with using the MRAs.