The Dyck bound in the concave 1-dimensional random assignment model

被引:5
作者
Caracciolo, Sergio [1 ,2 ]
D'Achille, Matteo P. [3 ,4 ,5 ,6 ]
Erba, Vittorio [1 ,2 ]
Sportiello, Andrea [7 ,8 ]
机构
[1] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20100 Milan, Italy
[2] INFN, Sez Milano, Via Celoria 16, I-20100 Milan, Italy
[3] Ctr CEA Saclay, Gif Sur Yvette, France
[4] CIRB Coll France, 11 Pl Marcelin Berthelot, F-75231 Paris, France
[5] Univ Versailles St Quentin En Yvelines, LI PaRAD, Versailles, France
[6] Univ Paris Saclay, Paris, France
[7] Univ Paris 13, Sorbonne Paris Cite, LIPN, 99 Av JB Clement, F-93430 Villetaneuse, France
[8] Univ Paris 13, Sorbonne Paris Cite, CNRS, 99 Av JB Clement, F-93430 Villetaneuse, France
关键词
Dyck paths; assignment problem; disordered systems;
D O I
10.1088/1751-8121/ab4a34
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider models of assignment for random N blue points and N red points on an interval of length 2N, in which the cost for connecting a blue point in x to a red point in y is the concave function |x - y |(p) , for 0 < p < 1. Contrarily to the convex case p > 1, where the optimal matching is trivially determined, here the optimization is non-trivial. The purpose of this paper is to introduce a special configuration, that we call the Dyck matching, and to study its statistical properties. We compute exactly the average cost, in the asymptotic limit of large N, together with the first subleading correction. The scaling is remarkable: it is of order N for , order for , and for , and it is universal for a wide class of models. We conjecture that the average cost of the Dyck matching has the same scaling in N as the cost of the optimal matching, and we produce numerical data in support of this conjecture. We hope to produce a proof of this claim in future work.
引用
收藏
页数:25
相关论文
共 40 条
[31]   Statistical physics of RNA folding -: art. no. 021914 [J].
Müller, M .
PHYSICAL REVIEW E, 2003, 67 (02) :17
[32]   Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures [J].
Nair, C ;
Prabhakar, B ;
Sharma, M .
RANDOM STRUCTURES & ALGORITHMS, 2005, 27 (04) :413-444
[33]   Planar diagrams from optimization for concave potentials [J].
Nechaev, S. K. ;
Sobolevski, A. N. ;
Valba, O. V. .
PHYSICAL REVIEW E, 2013, 87 (01)
[34]   RNA folding and large N matrix theory [J].
Orland, H ;
Zee, A .
NUCLEAR PHYSICS B, 2002, 620 (03) :456-476
[35]  
Orland H, 1985, J PHYS LETTRES, V46, P773, DOI 10.1051/jphyslet:019850046017076300
[36]   Glassy transition in a disordered model for the RNA secondary structure [J].
Pagnani, A ;
Parisi, G ;
Ricci-Tersenghi, F .
PHYSICAL REVIEW LETTERS, 2000, 84 (09) :2026-2029
[37]  
Parisi G, 1998, ARXIV COND MAT 98011
[38]  
Pitman J., 2018, ARXIV180209679
[39]   Scaling and non-standard matching theorems [J].
Talagrand, Michel .
COMPTES RENDUS MATHEMATIQUE, 2018, 356 (06) :692-695
[40]   Enumeration of RNA structures by matrix models [J].
Vernizzi, G ;
Orland, H ;
Zee, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)