Variance-Based Global Sensitivity Analysis via Sparse-Grid Interpolation and Cubature

被引:41
作者
Buzzard, Gregery T. [1 ]
Xiu, Dongbin [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Stochastic collocation; sparse grids; sensitivity analysis; Smolyak; Sobol'; INTEGRATION;
D O I
10.4208/cicp.230909.160310s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stochastic collocation method using sparse grids has become a popular choice for performing stochastic computations in high dimensional (random) parameter space. In addition to providing highly accurate stochastic solutions, the sparse grid collocation results naturally contain sensitivity information with respect to the input random parameters. In this paper, we use the sparse grid interpolation and cubature methods of Smolyak together with combinatorial analysis to give a computationally efficient method for computing the global sensitivity values of Sobol'. This method allows for approximation of all main effect and total effect values from evaluation of f on a single set of sparse grids. We discuss convergence of this method, apply it to several test cases and compare to existing methods. As a result which may be of independent interest, we recover an explicit formula for evaluating a Lagrange basis interpolating polynomial associated with the Chebyshev extrema. This allows one to manipulate the sparse grid collocation results in a highly efficient manner.
引用
收藏
页码:542 / 567
页数:26
相关论文
共 16 条
[1]  
[Anonymous], 2008, GLOBAL SENSITIVITY A
[2]   High dimensional polynomial interpolation on sparse grids [J].
Barthelmann, V ;
Novak, E ;
Ritter, K .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) :273-288
[3]   Polynomial chaos expansion for sensitivity analysis [J].
Crestaux, Thierry ;
Le Maitre, Olivier ;
Martinez, Jean-Marc .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (07) :1161-1172
[4]   Numerical integration using sparse grids [J].
Gerstner, T ;
Griebel, M .
NUMERICAL ALGORITHMS, 1998, 18 (3-4) :209-232
[5]  
Lewandowski D., 2007, ACM T MODEL COMPUT S, V18, P1
[6]  
Mason J.C., 2003, Chebyshev polynomials, DOI 10.1201/9781420036114
[7]   A quantitative model-independent method for global sensitivity analysis of model output [J].
Saltelli, A ;
Tarantola, S ;
Chan, KPS .
TECHNOMETRICS, 1999, 41 (01) :39-56
[8]   Making best use of model evaluations to compute sensitivity indices [J].
Saltelli, A .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 145 (02) :280-297
[9]  
*SIML, SIML 3 2 6
[10]  
Sobol I. M., 1993, MATH MODEL COMPUT EX, V4, P407