Unified equations of state for cold non-accreting neutron stars with Brussels-Montreal functionals - I. Role of symmetry energy

被引:169
作者
Pearson, J. M. [1 ]
Chamel, N. [2 ]
Potekhin, A. Y. [3 ]
Fantina, A. F. [2 ,4 ]
Ducoin, C. [5 ]
Dutta, A. K. [1 ,2 ,6 ]
Goriely, S. [2 ]
机构
[1] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
[2] Univ Libre Bruxelles, Inst Astron & Astrophys, CP 226, B-1050 Brussels, Belgium
[3] Ioffe Inst, Politekhn Skaya 26, St Petersburg 194021, Russia
[4] CEA, GANIL, CNRS, DRF,IN2P3, Blvd Henri Becquerel, F-14076 Caen, France
[5] Univ Claude Bernard Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France
[6] Devi Ahilya Univ, Sch Phys, Indore 452001, Madhya Pradesh, India
基金
加拿大自然科学与工程研究理事会; 俄罗斯基础研究基金会;
关键词
dense matter; equation of state; stars: neutron; THOMAS-FERMI APPROACH; NUCLEAR-MASS FORMULA; OF-STATE; GROUND-STATE; DENSE MATTER; INNER CRUST; DENSITIES; PLASMAS;
D O I
10.1093/mnras/sty2413
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The theory of the nuclear energy-density functional is used to provide a unified and thermodynamically consistent treatment of all regions of cold non-accreting neutron stars. In order to assess the impact of our lack of complete knowledge of the density dependence of the symmetry energy on the constitution and the global structure of neutron stars, we employ four different functionals. All of them were precision fitted to essentially all the nuclear mass data with the Hartree-Fock-Bogoliubov method and two different neutron-matter equations of state based on realistic nuclear forces. For each functional, we calculate the composition, the pressure-density relation, and the chemical potentials throughout the star. We show that uncertainties in the symmetry energy can significantly affect the theoretical results for the composition and global structure of neutron stars. To facilitate astrophysical applications, we construct analytic fits to our numerical results.
引用
收藏
页码:2994 / 3026
页数:33
相关论文
共 121 条
[1]  
Adkins C. J., 1983, Equilibrium Thermodynamics
[2]   Equation of state of nucleon matter and neutron star structure [J].
Akmal, A ;
Pandharipande, VR ;
Ravenhall, DG .
PHYSICAL REVIEW C, 1998, 58 (03) :1804-1828
[3]   Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State [J].
Annala, Eemeli ;
Gorda, Tyler ;
Kurkela, Aleksi ;
Vuorinen, Aleksi .
PHYSICAL REVIEW LETTERS, 2018, 120 (17)
[4]  
[Anonymous], 2002, Relativistic Electronic Structure Theory, Part 1. Fundamentals
[5]  
[Anonymous], 2007, NEUTRON STARS
[6]   The AME2003 atomic mass evaluation (II). Tables, graphs and references [J].
Audi, G ;
Wapstra, AH ;
Thibault, C .
NUCLEAR PHYSICS A, 2003, 729 (01) :337-676
[7]   The AME2012 atomic mass evaluation (I). Evaluation of input data, adjustment procedures [J].
Audi, G. ;
Wang, M. ;
Wapstra, A. H. ;
Kondev, F. G. ;
MacCormick, M. ;
Xu, X. ;
Pfeiffer, B. .
CHINESE PHYSICS C, 2012, 36 (12) :1287-1602
[8]   In-medium nuclear cluster energies within the extended Thomas-Fermi approach [J].
Aymard, Francois ;
Gulminelli, Francesca ;
Margueron, Jerome .
PHYSICAL REVIEW C, 2014, 89 (06)
[9]   A realistic model of superfluidity in the neutron star inner crust [J].
Baldo, M. ;
Saperstein, E. E. ;
Tolokonnikov, S. V. .
EUROPEAN PHYSICAL JOURNAL A, 2007, 32 (01) :97-108
[10]   The nuclear symmetry energy [J].
Baldo, M. ;
Burgio, G. F. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2016, 91 :203-258