Some new thoughts on Gauss-Laguerre quadrature

被引:7
作者
Evans, GA [1 ]
机构
[1] De Montfort Univ, Fac Comp Sci & Engn, Dept Comp Studies, Leicester LE1 9BH, Leics, England
关键词
infinite range quadrature; Gauss-Laguerre; non-exponentially decreasing integrands;
D O I
10.1080/00207160512331323399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Gauss-Laguerre quadrature is notoriously poor for integrating non-exponentially decreasing infinite-range integrals. A method is proposed based on the non-standard basis set 1/x(i) and this is implemented for the weight functions 1.0, log x and sin x. A series of tests demonstrate the effectiveness of the approach, and an algorithm is presented to achieve convergence to a specified accuracy.
引用
收藏
页码:721 / 730
页数:10
相关论文
共 11 条
[1]  
Berezin I., 1965, COMPUTING METHODS
[2]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[3]  
Evans EF, 2000, BRIT J AUDIOL, V34, P93
[4]   A high order, progressive method for the evaluation of irregular oscillatory integrals [J].
Evans, GA ;
Webster, JR .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (02) :205-218
[5]   Some theoretical aspects of generalised quadrature methods [J].
Evans, GA ;
Chung, KC .
JOURNAL OF COMPLEXITY, 2003, 19 (03) :272-285
[6]  
FUSAI G, 2000, DOUBLE INTEGRAL PRIC
[7]  
Gradshteyn I. S., 2007, Tables of Integrals, Series, and Products, V7
[8]  
HARTREE DR, 1954, P CAMB PHILOS SOC, V50, P567
[9]  
SAMPSON JH, 1988, J COMPUT PHYS, V142, P109
[10]  
Stroud A. H., 1966, Gaussian Quadrature Formulas