On the Obstacle Problem for a Naghdi Shell

被引:4
|
作者
Ben Belgacem, Faker [5 ]
Bernardi, Christine [1 ,2 ]
Blouza, Adel [3 ]
Taallah, Frekh [4 ]
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris, France
[2] Univ Paris 06, F-75252 Paris, France
[3] Univ Rouen, Lab Math Raphael Salem, UMR 6085, CNRS, F-76801 St Etienne, Rouvray, France
[4] Univ Badji Mokhtar, Fac Sci, Dept Math, Annaba 23000, Algeria
[5] Univ Technol Compiegne, Ctr Rech Royallieu, F-60205 Compiegne, France
关键词
Naghdi shell model; Contact problem; Variational inequalities; VARIATIONAL-INEQUALITIES; EXISTENCE; MODEL; REGULARITY; UNIQUENESS;
D O I
10.1007/s10659-010-9269-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Starting with the Naghdi model for a shell in Cartesian coordinates, we derive a model for the contact of this shell with a rigid body. We also prove the well-posedness of the resulting system of variational inequalities.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] The obstacle problem revisited
    L. A. Caffarelli
    Journal of Fourier Analysis and Applications, 1998, 4 : 383 - 402
  • [22] THE PROBLEM OF PUNCHING AN OBSTACLE
    SAGOMONYAN, AY
    GENDUGOV, VM
    SAGOMONYAN, YA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (01): : 52 - 56
  • [23] THE RIEMANNIAN OBSTACLE PROBLEM
    ALEXANDER, SB
    BERG, ID
    BISHOP, RL
    ILLINOIS JOURNAL OF MATHEMATICS, 1987, 31 (01) : 167 - 184
  • [24] Starshapedness in the obstacle problem
    Zheng, Jun
    Zhang, Zhihua
    Zhao, Peihao
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (03): : 405 - 416
  • [25] CAPACITY AND THE OBSTACLE PROBLEM
    ADAMS, DR
    APPLIED MATHEMATICS AND OPTIMIZATION, 1982, 8 (01): : 39 - 57
  • [26] A mixed DG method for folded Naghdi's shell in Cartesian coordinates
    Nicaise, Serge
    Merabet, Ismail
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (07) : 653 - 658
  • [27] BDDC preconditioners for Naghdi shell problems and MITC9 elements
    da Veiga, L. Beirao
    Chinosi, C.
    Lovadina, C.
    Pavarino, L. F.
    COMPUTERS & STRUCTURES, 2012, 102 : 28 - 41
  • [28] Mathematical Justification of the Obstacle Problem in the Case of a Shallow Shell (vol 90, pg 241, 2008)
    Leger, Alain
    Miara, Bernadette
    JOURNAL OF ELASTICITY, 2010, 98 (01) : 115 - 116
  • [29] A justification of linear Koiter and Naghdi's models for totally clamped shell
    Lods, V
    Mardare, C
    ASYMPTOTIC ANALYSIS, 2002, 31 (3-4) : 189 - 210
  • [30] Advantages of the p-version of the FEM for a linear NAGHDI shell element
    Preusch, K
    Bruhns, OT
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S885 - S886