Machine Learning based Predictions of Subjective Refractive Errors of the Human Eye

被引:5
作者
Leube, Alexander [1 ,2 ]
Leibig, Christian [1 ]
Ohlendorf, Arne [1 ,2 ]
Wahl, Siegfried [1 ,2 ]
机构
[1] Eberhard Karls Univ Tubingen, Inst Ophthalm Res, Tubingen, Germany
[2] Carl Zeiss Vis Int GmbH, Technol & Innovat, Aalen, Germany
来源
HEALTHINF: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF | 2019年
关键词
Big Data; Machine Learning; Subjective Refraction; VISUAL-ACUITY; ABERRATION; REPEATABILITY;
D O I
10.5220/0007254401990205
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The aim of this research was to demonstrate the suitability of a data-driven approach to identify the sphero-cylindrical subjective refraction. An artificial deep learning network with two hidden layers was trained to predict power vector refraction (M, J(0) and J(45)) from 37 dimensional feature vectors (36 Zernike coefficients + pupil diameter) from a large database of 50,000 eyes. A smaller database of 460 eyes containing subjective and objective refraction from controlled experiment conditions was used to test for prediction power. Bland-Altmann analysis was performed, calculating the mean difference (eg Delta M) and the 95% confidence interval (CI) between predictions and subjective refraction. Using the machine learning approach, the accuracy (Delta M = +0.08D) and precision (CI for Delta M = +/- 0.78D) for the prediction of refractive error corrections was comparable to a conventional metric (Delta M = +0.11D +/- 0.89D) as well as the inter-examiner agreement between optometrists (Delta M = -0.05D +/- 0.63D). To conclude, the proposed deep learning network for the prediction of refractive error corrections showed its suitability to reliably predict subjective power vectors of refraction from objective wavefront data.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 29 条
[1]  
Abadi M., 2015, TENSORFLOW LARGE SCA, DOI DOI 10.48550/ARXIV.1603.04467
[2]  
[Anonymous], 1991, OPHTHALMOLOGY, V98, P741
[3]  
[Anonymous], 2013, P 30 INT C INT C MAC
[4]   Interaction between aberrations to improve or reduce visual performance [J].
Applegate, RA ;
Marsack, JD ;
Ramos, R ;
Sarver, EJ .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2003, 29 (08) :1487-1495
[5]   Visual acuity as a function of Zernike mode and level of root mean square error [J].
Applegate, RA ;
Ballentine, C ;
Gross, H ;
Sarver, EJ ;
Sarver, CA .
OPTOMETRY AND VISION SCIENCE, 2003, 80 (02) :97-105
[6]   Neural compensation for the eye's optical aberrations [J].
Artal, P ;
Chen, L ;
Fernández, EJ ;
Singer, B ;
Manzanera, S ;
Williams, DR .
JOURNAL OF VISION, 2004, 4 (04) :281-287
[7]  
Bishop C. M., 2006, PATTERN RECOGNITION, DOI DOI 10.1117/1.2819119
[8]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[9]  
ELLIOTT DB, 1993, INVEST OPHTH VIS SCI, V34, P108
[10]   A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants [J].
Fritsche, Lars G. ;
Igl, Wilmar ;
Bailey, Jessica N. Cooke ;
Grassmann, Felix ;
Sengupta, Sebanti ;
Bragg-Gresham, Jennifer L. ;
Burdon, Kathryn P. ;
Hebbring, Scott J. ;
Wen, Cindy ;
Gorski, Mathias ;
Kim, Ivana K. ;
Cho, David ;
Zack, Donald ;
Souied, Eric ;
Scholl, Hendrik P. N. ;
Bala, Elisa ;
Lee, Kristine E. ;
Hunter, David J. ;
Sardell, Rebecca J. ;
Mitchell, Paul ;
Merriam, Joanna E. ;
Cipriani, Valentina ;
Hoffman, Joshua D. ;
Schick, Tina ;
Lechanteur, Yara T. E. ;
Guymer, Robyn H. ;
Johnson, Matthew P. ;
Jiang, Yingda ;
Stanton, Chloe M. ;
Buitendijk, Gabrielle H. S. ;
Zhan, Xiaowei ;
Kwong, Alan M. ;
Boleda, Alexis ;
Brooks, Matthew ;
Gieser, Linn ;
Ratnapriya, Rinki ;
Branham, Kari E. ;
Foerster, Johanna R. ;
Heckenlively, John R. ;
Othman, Mohammad I. ;
Vote, Brendan J. ;
Liang, Helena Hai ;
Souzeau, Emmanuelle ;
McAllister, Ian L. ;
Isaacs, Timothy ;
Hall, Janette ;
Lake, Stewart ;
Mackey, David A. ;
Constable, Ian J. ;
Craig, Jamie E. .
NATURE GENETICS, 2016, 48 (02) :134-143