Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications

被引:105
作者
Himes, Benjamin T. [1 ]
Geiger, Philipp A. [2 ]
Ayasoufi, Katayoun [3 ]
Bhargav, Adip G. [4 ]
Brown, Desmond A. [5 ]
Parney, Ian F. [1 ,3 ]
机构
[1] Mayo Clin, Dept Neurol Surg, Rochester, MN 55905 USA
[2] Univ Hosp Innsbruck, Dept Neurosurg, Tyrol, Austria
[3] Mayo Clin, Dept Immunol, Rochester, MN 55905 USA
[4] Univ Kansas, Dept Neurosurg, Kansas City, KS USA
[5] NINDS, Surg Neurol Branch, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
关键词
immunosuppression; glioblastoma; myeloid; derived suppressor cell; extracellular vesicles; immunotherapy; REGULATORY T-CELLS; SUPPRESSOR-CELLS; IMMUNE SUPPRESSION; DOWN-REGULATION; TGF-BETA; ADJUVANT TEMOZOLOMIDE; GLIOMA-CELLS; EXPRESSION; CANCER; RADIOTHERAPY;
D O I
10.3389/fonc.2021.770561
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Glioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients. This limits the utility of all manner of immunotherapeutic agents, which have revolutionized the treatment of a number of cancers in recent years, but have failed to show similar benefit in GBM therapy. Understanding the mechanisms of tumor-mediated immune suppression in GBM is critical to the development of effective novel therapies, and reversal of this effect may prove key to effective immunotherapy for GBM. In this review, we discuss the current understanding of tumor-mediated immune suppression in GBM in both the local tumor microenvironment and systemically. We also discuss the effects of current GBM therapy on the immune system. We specifically explore some of the downstream effectors of tumor-driven immune suppression, particularly myeloid-derived suppressor cells (MDSCs) and other immunosuppressive monocytes, and the manner by which GBM induces their formation, with particular attention to the role of GBM-derived extracellular vesicles (EVs). Lastly, we briefly review the current state of immunotherapy for GBM and discuss additional hurdles to overcome identification and implementation of effective therapeutic strategies.
引用
收藏
页数:11
相关论文
共 128 条
[1]   Distinct effects of human glioblastoma immunoregulatory molecules programmed cell death ligand-1 (PDL-1) and indoleamine 2,3-dioxygenase (IDO) on tumour-specific T cell functions [J].
Avril, Tony ;
Saikali, Stephan ;
Vauleon, Elodie ;
Jary, Anne ;
Hamlat, Abderrahmane ;
De Tayrac, Marie ;
Mosser, Jean ;
Quillien, Veronique .
JOURNAL OF NEUROIMMUNOLOGY, 2010, 225 (1-2) :22-33
[2]   Brain cancer induces systemic immunosuppression through release of non-steroid soluble mediators [J].
Ayasoufi, Katayoun ;
Pfaller, Christian K. ;
Evgin, Laura ;
Khadka, Roman H. ;
Tritz, Zachariah P. ;
Goddery, Emma N. ;
Fain, Cori E. ;
Yokanovich, Lila T. ;
Himes, Benjamin T. ;
Jin, Fang ;
Zheng, Jiaying ;
Schuelke, Matthew R. ;
Hansen, Michael J. ;
Tung, Wesley ;
Parney, Ian F. ;
Pease, Larry R. ;
Vile, Richard G. ;
Johnson, Aaron J. .
BRAIN, 2020, 143 :3629-3652
[3]   Myeloid-Derived Suppressor Cell Subsets Drive Glioblastoma Growth in a Sex-Specific Manner [J].
Bayik, Defne ;
Zhou, Yadi ;
Park, Chihyun ;
Hong, Changjin ;
Vail, Daniel ;
Silver, Daniel J. ;
Lauko, Adam ;
Roversi, Gustavo ;
Watson, Dionysios C. ;
Lo, Alice ;
Alban, Tyler J. ;
McGraw, Mary ;
Sorensen, Mia ;
Grabowski, Matthew M. ;
Otvos, Balint ;
Vogelbaum, Michael A. ;
Horbinski, Craig ;
Kristensen, Bjarne Winther ;
Khalil, Ahmad M. ;
Tae Hyun Hwang ;
Ahluwalia, Manmeet S. ;
Cheng, Feixiong ;
Lathia, Justin D. .
CANCER DISCOVERY, 2020, 10 (08) :1210-1225
[4]   The CNS Immune-Privilege Goes Down the Drain(age) [J].
Brioschi, Simone ;
Colonna, Marco .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2019, 40 (01) :1-3
[5]   Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J].
Bronte, Vincenzo ;
Brandau, Sven ;
Chen, Shu-Hsia ;
Colombo, Mario P. ;
Frey, Alan B. ;
Greten, Tim F. ;
Mandruzzato, Susanna ;
Murray, Peter J. ;
Ochoa, Augusto ;
Ostrand-Rosenberg, Suzanne ;
Rodriguez, Paulo C. ;
Sica, Antonio ;
Umansky, Viktor ;
Vonderheide, Robert H. ;
Gabrilovich, Dmitry I. .
NATURE COMMUNICATIONS, 2016, 7
[6]   A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells [J].
Carreno, Beatriz M. ;
Magrini, Vincent ;
Becker-Hapak, Michelle ;
Kaabinejadian, Saghar ;
Hundal, Jasreet ;
Petti, Allegra A. ;
Ly, Amy ;
Lie, Wen-Rong ;
Hildebrand, William H. ;
Mardis, Elaine R. ;
Linette, Gerald P. .
SCIENCE, 2015, 348 (6236) :803-808
[7]   Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model [J].
Chae, Michael ;
Peterson, Timothy E. ;
Balgeman, Alexis ;
Chen, Selby ;
Zhang, Lei ;
Renner, Danielle N. ;
Johnson, Aaron J. ;
Parney, Ian F. .
NEURO-ONCOLOGY, 2015, 17 (07) :978-991
[8]   LOX-1+PMN-MDSC enhances immune suppression which promotes glioblastoma multiforme progression [J].
Chai, ErQing ;
Zhang, Lan ;
Li, Changqing .
CANCER MANAGEMENT AND RESEARCH, 2019, 11 :7307-7315
[9]   Factors affecting graft infection after cranioplasty [J].
Cheng, Yu-Kai ;
Weng, Hsu-Huei ;
Yang, Jen-Tsung ;
Lee, Ming-Hsuch ;
Wang, Ting-Chung ;
Chang, Chen-Nen .
JOURNAL OF CLINICAL NEUROSCIENCE, 2008, 15 (10) :1115-1119
[10]  
Chinot OL, 2014, NEW ENGL J MED, V370, P709, DOI 10.1056/NEJMoa1308345