Photoelectrochemical water splitting by engineered multilayer TiO2/GQDs photoanode with cascade charge transfer structure

被引:36
作者
Sajjadizadeh, Halimeh-Sadat [1 ]
Goharshadi, Elaheh K. [1 ,2 ]
Ahmadzadeh, Hossein [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Chem, Fac Sci, Mashhad 9177948974, Razavi Khorasan, Iran
[2] Ferdowsi Univ Mashhad, Nano Res Ctr, Mashhad 9177948974, Razavi Khorasan, Iran
关键词
Photoelectrochemical water splitting; TiO2/GQDs nanocomposite; Photoanode; Cascade charge transfer structure; Few-layer graphene nanosheets; ATOMIC LAYER DEPOSITION; TIO2 NANOTUBE ARRAYS; PHOTOCATALYTIC HYDROGEN-PRODUCTION; GRAPHENE QUANTUM DOTS; TITANIUM-DIOXIDE; SOLAR-CELLS; PERFORMANCE; OXIDATION; CARBON; GENERATION;
D O I
10.1016/j.ijhydene.2019.10.161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, for the first time, an efficient photoanode engineered with the cascade structure of FTO vertical bar c-TiO2 vertical bar few graphene layers vertical bar TiO2/GQDs vertical bar Ni(OH)(2) assembly (Ni(OH)(2) photoanode) is designed. This photoanode exhibited much lower electron-hole recombination, fast charge transport, higher visible light harvesting, and excellent performance with respect to FTO vertical bar c-TiO2 vertical bar TiO2 assembly (TiO2 photoanode) in the photoelectrocatalytic oxygen evolution process. The photocurrent density of Ni(OH)(2) photoanode is 7 times (0.35 mA cm(-2) at 1.23 V vs. RHE) greater than that of TiO2 photoanode (0.045 mA cm(-2) at 1.23 V vs. RHE). The compact TiO2 (c-TiO2) layer in Ni(OH)(2) photoanode plays a role of an effective hole-blocking layer. Few-layer graphene layer could speed up the transport of the photogenerated electrons from the conduction band of the TiO2/GQDs to FTO. Ni(OH)(2) layer could transfer rapidly holes into electrolyte solution. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 66 条
[1]   Activation effect of silver nanoparticles on the photoelectrochemical performance of mesoporous TiO2 nanospheres photoanodes for water oxidation reaction [J].
Arunachalam, Prabhakarn ;
Amer, Mabrook S. ;
Ghanem, Mohamed A. ;
Al-Mayouf, Abdullah M. ;
Zhao, Dongyuan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (16) :11346-11355
[2]   Strategies for stable water splitting via protected photoelectrodes [J].
Bae, Dowon ;
Seger, Brian ;
Vesborg, Peter C. K. ;
Hansen, Ole ;
Chorkendorff, Ib .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (07) :1933-1954
[3]   Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) :991-1022
[4]   Graphene quantum dots decorated rutile TiO2 nanoflowers for water splitting application [J].
Bayat, A. ;
Saievar-Iranizad, E. .
JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (01) :306-310
[5]   Dye-sensitized TiO2 solar cells based on nanocomposite photoanode containing plasma-modified multi-walled carbon nanotubes [J].
Chan, Yen-Fong ;
Wang, Cheng-Chien ;
Chen, Bing-Hung ;
Chen, Chuh-Yung .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :47-57
[6]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[7]  
Chen Z., 2013, PHOTOELECTROCHEMICAL
[8]   Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst [J].
Dholam, R. ;
Patel, N. ;
Adami, M. ;
Miotello, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (13) :5337-5346
[9]   Solar photochemical-thermal water splitting at 140 °C with Cu-loaded TiO2 [J].
Docao, Son ;
Koirala, Agni Raj ;
Kim, Min Gyu ;
Hwang, In Chul ;
Song, Mee Kyung ;
Yoon, Kyung Byung .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :628-640
[10]   3-D mesoporous nitrogen-doped reduced graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline fuel cells: Role of π and lone pair electrons [J].
Farzaneh, Ali ;
Saghatoleslami, Naser ;
Goharshadi, Elaheh K. ;
Gharibi, Hossein ;
Ahmadzadeh, Hossein .
ELECTROCHIMICA ACTA, 2016, 222 :608-618