The weighted hardy inequality: New proofs and the case p=1

被引:132
作者
Sinnamon, G [1 ]
Stepanov, VD [1 ]
机构
[1] RUSSIAN ACAD SCI, COMP CTR FAR EASTERN BRANCH, KHABAROVSK 680042, RUSSIA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1996年 / 54卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/jlms/54.1.89
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An elementary proof is given of the weight characterisation for the Hardy inequality [GRAPHICS] in the case 0 < q < p, 1 < p < infinity. It is also shown that certain weighted inequalities with monotone kernels are equivalent to inequalities in which one of the weights is monotone. Using this, a characterisation of those weights for which (1.1) holds with 0 < q < 1 = p is given. Results for (1.1), considered as an inequality over monotone functions f are presented.
引用
收藏
页码:89 / 101
页数:13
相关论文
共 12 条
[1]   FUNCTION SPACES [J].
HALPERIN, I .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (03) :273-288
[2]  
Hardy G.H., 1952, INEQUALITIES
[3]  
Kantorovich LV, 1982, FUNCTIONAL ANAL
[4]  
Mazja V. G., 1985, Springer Ser. Soviet Math.
[5]   HARDYS INEQUALITY WITH WEIGHTS [J].
MUCKENHOUPT, B .
STUDIA MATHEMATICA, 1972, 44 (01) :31-+
[6]  
Opic B., 1990, HARDY TYPE INEQUALIT
[7]  
Royden H. L., 1968, REAL ANAL
[8]  
SAWYER E, 1984, T AM MATH SOC, V281, P329
[9]  
Scott Bradley J., 1978, CANAD MATH B, V21, P405, DOI [10.4153/CMB-1978-071-7, DOI 10.4153/CMB-1978-071-7]
[10]   SPACES DEFINED BY THE LEVEL FUNCTION AND THEIR DUALS [J].
SINNAMON, G .
STUDIA MATHEMATICA, 1994, 111 (01) :19-52