Cohen-Macaulay local rings with e2 = e1 - e+1

被引:2
作者
Mishra, Ankit [1 ]
Puthenpurakal, Tony J. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, India
关键词
Multiplicity; Blow-up algebra's; Ratliff-Rush filtration; Hilbert functions; RATLIFF-RUSH FILTRATION; HILBERT COEFFICIENTS; GRADED RINGS; DEPTH; REGULARITY;
D O I
10.1016/j.jalgebra.2022.07.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study Cohen-Macaulay local rings of dimension d, multiplicity e and second Hilbert coefficient e(2) in the case e(2) = e(1) - e + 1. Let h = mu(m) - d. If e(2) &NOTEQUexpressionL; 0 then in our case we can prove that type(A) >= e - h - 1. If type(A) = e - h - 1 then we show that the associated graded ring G(A) is Cohen-Macaulay. In the next case when type(A) = e - h we determine all possible Hilbert series of A. In this case we show that depth G(A) completely determines the Hilbert Series of A. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 109
页数:16
相关论文
共 15 条