Spin-1 microcondensate in a magnetic field

被引:11
作者
Lamacraft, Austen [1 ]
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 03期
关键词
D O I
10.1103/PhysRevA.83.033605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study a spin-1 Bose-Einstein condensate small enough to be treated as a single magnetic domain: a system that we term a microcondensate. Because all particles occupy a single spatial mode, this quantum many-body system has a well-defined classical limit consisting of three degrees of freedom, corresponding to the three macroscopically occupied spin states. We study both the classical limit and its quantization, finding an integrable system in both cases. Depending on the sign of the ratio of the spin interaction energy and the quadratic Zeeman energy, the classical limit displays either a separatrix in phase space or Hamiltonian monodromy corresponding to nontrivial phase space topology. We discuss the quantum signatures of these classical phenomena using semiclassical quantization as well as an exact solution using the Bethe ansatz.
引用
收藏
页数:14
相关论文
共 35 条
[1]  
[Anonymous], 2015, Global aspects of classical integrable systems
[2]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[3]   A semi-classical study of the Jaynes-Cummings model [J].
Babelon, O. ;
Cantini, L. ;
Doucot, B. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[4]   Quantum rotor theory of spinor condensates in tight traps [J].
Barnett, Ryan ;
Hui, Hoi-Yin ;
Lin, Chien-Hung ;
Sau, Jay D. ;
Das Sarma, S. .
PHYSICAL REVIEW A, 2011, 83 (02)
[5]   Antiferromagnetic spinor condensates are quantum rotors [J].
Barnett, Ryan ;
Sau, Jay D. ;
Das Sarma, S. .
PHYSICAL REVIEW A, 2010, 82 (03)
[6]   Spinor dynamics in an antiferromagnetic spin-1 condensate [J].
Black, A. T. ;
Gomez, E. ;
Turner, L. D. ;
Jung, S. ;
Lett, P. D. .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[7]  
Bogoliubov N.M, 2006, J MATH SCI-U TOKYO, V136, P3552, DOI [10.1007/s10958-006-0180-0, DOI 10.1007/S10958-006-0180-0]
[8]  
Cannon James W., 1997, FLAVORS OF GEOMETRY, P59
[9]   Coherent spinor dynamics in a spin-1 Bose condensate [J].
Chang, MS ;
Qin, QS ;
Zhang, WX ;
You, L ;
Chapman, MS .
NATURE PHYSICS, 2005, 1 (02) :111-116
[10]   Non-Hamiltonian monodromy [J].
Cushman, R ;
Duistermaat, JJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 172 (01) :42-58