Automatic Detection and Parameter Estimation of Trees for Forest Inventory Applications Using 3D Terrestrial LiDAR

被引:19
|
作者
Aijazi, Ahmad K. [1 ]
Checchin, Paul [1 ]
Malaterre, Laurent [1 ]
Trassoudaine, Laurent [1 ]
机构
[1] Univ Clermont Auvergne, CNRS, Inst Pascal, SIGMA Clermont, F-63000 Clermont Ferrand, France
关键词
tree segmentation; 3D LiDAR; forest inventory; parameter estimation; STEM VOLUME; LASER; SEGMENTATION; ALGORITHM; MODELS; CLASSIFICATION; EXTRACTION; DBH;
D O I
10.3390/rs9090946
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest inventory plays an important role in the management and planning of forests. In this study, we present a method for automatic detection and estimation of trees, especially in forest environments using 3D terrestrial LiDAR data. The proposed method does not rely on any predefined tree shape or model. It uses the vertical distribution of the 3D points partitioned in a gridded Digital Elevation Model (DEM) to extract out ground points. The cells of the DEM are then clustered together to form super-clusters representing potential tree objects. The 3D points contained in each of these super-clusters are then classified into trunk and vegetation classes using a super-voxel based segmentation method. Different attributes (such as diameter at breast height, basal area, height and volume) are then estimated at individual tree levels which are then aggregated to generate metrics for forest inventory applications. The method is validated and evaluated on three different data sets obtained from three different types of terrestrial sensors (vehicle-borne, handheld and static) to demonstrate its applicability and feasibility for a wide range of applications. The results are evaluated by comparing the estimated parameters with real field observations/measurements to demonstrate the efficacy of the proposed method. Overall segmentation and classification accuracies greater than ata Set License: ODC Attribute Licence
引用
收藏
页数:24
相关论文
共 50 条
  • [1] UAV-LiDAR and Terrestrial Laser Scanning for Automatic Extraction of Forest Inventory Parameters
    Meghraoui, Khadija
    Lfalah, Hamza
    Sebari, Imane
    Kellouch, Souhail
    Fadil, Sanaa
    El Kadi, Kenza Ait
    Bensiali, Saloua
    PROCEEDINGS OF UASG 2021: WINGS 4 SUSTAINABILITY, 2023, 304 : 375 - 393
  • [2] Forest Inventory and Aboveground Biomass Estimation with Terrestrial LiDAR in the Tropical Forest of Malaysia
    Beyene, Solomon M.
    Hussin, Yousif A.
    Kloosterman, Henk E.
    Ismail, Mohd Hasmadi
    CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (02) : 130 - 145
  • [3] AUTOMATIC TREE DETECTION/LOCALIZATION IN URBAN FOREST USING TERRESTRIAL LIDAR DATA
    dos Santos, Renato Cesar
    da Silva, Matheus Ferreira
    Tommaselli, Antonio Maria G.
    Galo, Mauricio
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4522 - 4525
  • [4] Automatic Detection and Modeling of Underground Pipes Using a Portable 3D LiDAR System
    Aijazi, Ahmad K.
    Malaterre, Laurent
    Trassoudaine, Laurent
    Chateau, Thierry
    Checchin, Paul
    SENSORS, 2019, 19 (24)
  • [5] Voxel-Based Automatic Tree Detection and Parameter Retrieval from Terrestrial Laser Scans for Plot-Wise Forest Inventory
    Brolly, Gabor
    Kiraly, Geza
    Lehtomaki, Matti
    Liang, Xinlian
    REMOTE SENSING, 2021, 13 (04) : 1 - 23
  • [6] 3D GEOLOGICAL OUTCROP CHARACTERIZATION: AUTOMATIC DETECTION OF 3D PLANES (AZIMUTH AND DIP) USING LiDAR POINT CLOUDS
    Anders, K.
    Haemmerle, M.
    Miernik, G.
    Drews, T.
    Escalona, A.
    Townsend, C.
    Hoefle, B.
    XXIII ISPRS CONGRESS, COMMISSION V, 2016, 3 (05): : 105 - 112
  • [7] VecTree - Concepts for 3D modelling of deciduous trees from terrestrial Lidar
    Lamprecht, Sebastian
    Stoffels, Johannes
    Udelhoven, Thomas
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2015, (03): : 241 - 255
  • [8] FOREST MODELING AND INVENTORY ESTIMATION USING LIDAR DATA
    Farajelahi, B.
    Eya, F. F.
    Arefi, H.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 159 - 164
  • [9] LeWoS: A universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR
    Wang, Di
    Takoudjou, Stephane Momo
    Casella, Eric
    METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (03): : 376 - 389
  • [10] An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR
    Cote, Jean-Francois
    Fournier, Richard A.
    Egli, Richard
    ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (06) : 761 - 777