THE NONLINEAR SCHRODINGER EQUATION ON TORI: INTEGRATING HARMONIC ANALYSIS, GEOMETRY, AND PROBABILITY

被引:7
|
作者
Nahmod, Andrea R. [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, 710 North Pleasant St, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
GROSS-PITAEVSKII HIERARCHY; DISCRETE FOURIER RESTRICTION; BOSE-EINSTEIN CONDENSATION; GLOBAL WELL-POSEDNESS; WATER-WAVE PROBLEM; MODULATION APPROXIMATION; IRRATIONAL TORI; SOBOLEV NORMS; DERIVATION; DYNAMICS;
D O I
10.1090/bull/1516
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The field of nonlinear dispersive and wave equations has undergone significant progress in the last twenty years thanks to the influx of tools and ideas from nonlinear Fourier and harmonic analysis, geometry, analytic number theory and most recently probability, into the existing functional analytic methods. In these lectures we concentrate on the semilinear Schrodinger equation defined on tori and discuss the most important developments in the analysis of these equations. In particular, we discuss in some detail recent work by J. Bourgain and C. Demeter proving the l(2) decoupling conjecture and as a consequence the full range of Strichartz estimates on either rational or irrational tori, thus settling an important earlier conjecture by Bourgain.
引用
收藏
页码:57 / 91
页数:35
相关论文
共 50 条
  • [41] Stationary states of a nonlinear Schrodinger lattice with a harmonic trap
    Achilleos, V.
    Theocharis, G.
    Kevrekidis, P. G.
    Karachalios, N. I.
    Diakonos, F. K.
    Frantzeskakis, D. J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
  • [42] Vortex pairs in the discrete nonlinear Schrodinger equation
    Bramburger, J. J.
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    NONLINEARITY, 2020, 33 (05) : 2159 - 2180
  • [43] Damped Nonlinear Schrodinger Equation with Stark Effect
    Hu, Yi
    Lee, Yongki
    Zheng, Shijun
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, NMMP 2022, 2024, 459 : 189 - 205
  • [44] LOCAL WELL-POSEDNESS FOR 2-D SCHRODINGER EQUATION ON IRRATIONAL TORI AND BOUNDS ON SOBOLEV NORMS
    Demirbas, Seckin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) : 1517 - 1530
  • [45] Singularity analysis and explicit solutions of a new coupled nonlinear Schrodinger type equation
    Yong, Xuelin
    Gao, Jianwei
    Zhang, Zhiyong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) : 2513 - 2518
  • [46] Justification of the Nonlinear Schrodinger Approximation for a Quasilinear Klein-Gordon Equation
    Duell, Wolf-Patrick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (03) : 1189 - 1207
  • [47] A conservative spectral collocation method for the nonlinear Schrodinger equation in two dimensions
    Zhang, Rongpei
    Zhu, Jiang
    Yu, Xijun
    Li, Mingjun
    Loula, Abimael F. D.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 194 - 203
  • [48] Condensation of classical optical waves beyond the cubic nonlinear Schrodinger equation
    Picozzi, Antonio
    Rica, Sergio
    OPTICS COMMUNICATIONS, 2012, 285 (24) : 5440 - 5448
  • [49] Derivation of the Biot-Savart equation from the nonlinear Schrodinger equation
    Bustamante, Miguel D.
    Nazarenko, Sergey
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [50] Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrodinger equation
    Isom, Bradley
    Mantzavinos, Dionyssios
    Stefanov, Atanas
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2289 - 2329