THE NONLINEAR SCHRODINGER EQUATION ON TORI: INTEGRATING HARMONIC ANALYSIS, GEOMETRY, AND PROBABILITY

被引:7
|
作者
Nahmod, Andrea R. [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, 710 North Pleasant St, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
GROSS-PITAEVSKII HIERARCHY; DISCRETE FOURIER RESTRICTION; BOSE-EINSTEIN CONDENSATION; GLOBAL WELL-POSEDNESS; WATER-WAVE PROBLEM; MODULATION APPROXIMATION; IRRATIONAL TORI; SOBOLEV NORMS; DERIVATION; DYNAMICS;
D O I
10.1090/bull/1516
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The field of nonlinear dispersive and wave equations has undergone significant progress in the last twenty years thanks to the influx of tools and ideas from nonlinear Fourier and harmonic analysis, geometry, analytic number theory and most recently probability, into the existing functional analytic methods. In these lectures we concentrate on the semilinear Schrodinger equation defined on tori and discuss the most important developments in the analysis of these equations. In particular, we discuss in some detail recent work by J. Bourgain and C. Demeter proving the l(2) decoupling conjecture and as a consequence the full range of Strichartz estimates on either rational or irrational tori, thus settling an important earlier conjecture by Bourgain.
引用
收藏
页码:57 / 91
页数:35
相关论文
共 50 条
  • [21] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [22] Breathers for the Discrete Nonlinear Schrodinger Equation with Nonlinear Hopping
    Karachalios, N. I.
    Sanchez-Rey, B.
    Kevrekidis, P. G.
    Cuevas, J.
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (02) : 205 - 239
  • [23] Nonlocal solitons in the parametrically driven nonlinear Schrodinger equation: Stability analysis
    Molchan, Maxim A.
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [24] Self-Similarity Analysis of the Nonlinear Schrodinger Equation in the Madelung Form
    Barna, Imre F.
    Pocsai, Mihaly A.
    Matyas, L.
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [25] Superconvergence analysis of BDF-Galerkin FEM for nonlinear Schrodinger equation
    Wang, Junjun
    Li, Meng
    Zhang, Yu
    NUMERICAL ALGORITHMS, 2022, 89 (01) : 195 - 222
  • [26] A local refinement purely meshless scheme for time fractional nonlinear Schrodinger equation in irregular geometry region
    Jiang, Tao
    Jiang, Rong-Rong
    Huang, Jin-Jing
    Ding, Jiu
    Ren, Jin-Lian
    CHINESE PHYSICS B, 2021, 30 (02)
  • [27] Nonlinear Schrodinger Equation with Delay and Its Regularization
    Sakbaev, V. Zh.
    Shiryaeva, A. D.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 936 - 949
  • [28] The derivative nonlinear Schrodinger equation on the half line
    Erdogan, M. B.
    Gurel, T. B.
    Tzirakis, N.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (07): : 1947 - 1973
  • [29] Finite speed of disturbance for the nonlinear Schrodinger equation
    Correia, Simao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (06) : 1405 - 1419
  • [30] Stability of Multisolitons for the Derivative Nonlinear Schrodinger Equation
    Le Coz, Stefan
    Wu, Yifei
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (13) : 4120 - 4170