Exponential Synchronization of Master-Slave Lur'e Systems via Intermittent Time-Delay Feedback Control

被引:14
作者
Wang Yi-Jing [1 ]
Hao Jian-Na
Zuo Zhi-Qiang [1 ,2 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, Tianjin Key Lab Proc Measurement & control, Tianjin 300072, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
exponential synchronization; intermittent control; delayed feedback control; Razumikhin stability theory; Chua's circuits; STABILIZATION; STABILITY; NETWORKS;
D O I
10.1088/0253-6102/54/4/20
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'e systems with time delay. Different from the previous methods based on the differential inequality technique, a new approach is proposed to derive some new exponential synchronization criteria. The restriction that the control width has to be larger than the time delay is removed. This leads to a larger application scope for our method. Moreover, no transcendental equation is involved in the obtained result, which reduces the computational burden. Two examples are given to validate the theoretical results.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 22 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]   Projective synchronization of a class of delayed chaotic systems via impulsive control [J].
Cao, Jinde ;
Ho, Daniel W. C. ;
Yang, Yongqing .
PHYSICS LETTERS A, 2009, 373 (35) :3128-3133
[3]  
Chen G., 1998, CHAOS ORDER METHODOL
[4]   Stability analysis and decentralized control of a class of complex dynamical networks [J].
Duan, Zhisheng ;
Wang, Jinzhi ;
Chen, Guanrong ;
Huang, Lin .
AUTOMATICA, 2008, 44 (04) :1028-1035
[5]   Generalized projective synchronization in time-delayed systems: Nonlinear observer approach [J].
Ghosh, Dibakar .
CHAOS, 2009, 19 (01)
[6]  
Hale J.K., 1993, Introduction to Functional Differntial Equations
[7]   Synchronization of chaotic systems with delay using intermittent linear state feedback [J].
Huang, Tingwen ;
Li, Chuandong ;
Liu, Xinzhi .
CHAOS, 2008, 18 (03)
[8]   Impulsively synchronizing chaotic systems with delay and applications to secure communication [J].
Khadra, A ;
Liu, XZ ;
Shen, X .
AUTOMATICA, 2005, 41 (09) :1491-1502
[9]   Synchronization of networks of chaotic units with time-delayed couplings [J].
Kinzel, W. ;
Englert, A. ;
Reents, G. ;
Zigzag, M. ;
Kanter, I. .
PHYSICAL REVIEW E, 2009, 79 (05)
[10]   Exponential stabilization of chaotic systems with delay by periodically intermittent control [J].
Li, Chuandong ;
Liao, Xiaofeng ;
Huang, Tingwen .
CHAOS, 2007, 17 (01)