Free-by-Demushkin pro-p groups

被引:5
作者
Kochloukova, DH
Zalesskii, P
机构
[1] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
D O I
10.1007/s00209-004-0720-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an example of a short exact sequence 1 -> N -> G -> D -> 1 of pro-p groups such that the cohomological dimension cd(G) = 2, G is (topologically) finitely generated, N is a free pro-p group of infinite rank, D is a Demushkin group, for every closed subgroup S of G containing N and any natural number n the inflation map H 2 (S/N, Z/(p(n))) -> H-2(S, Z/(P-n)) is an isomorphism but G is not a free pro-p product of a free pro-p group by a Demushkin group. This is a group theoretic version of a question raised by T. Wurfel for some special Galois groups.
引用
收藏
页码:731 / 739
页数:9
相关论文
共 14 条
  • [1] Cohen D. E., 1989, COMBINATORIAL GROUP
  • [2] Demushkin S., 1961, IZV AKAD NAUK USSR M, V25, P329
  • [3] Demushkin S., 1963, SIBERIAN MATH J, V4, P951
  • [4] Normal subgroups of profinite groups of finite cohomological dimension
    Engler, A
    Haran, D
    Kochloukova, D
    Zalesskii, PA
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 317 - 332
  • [5] Gildenhuys D., 1968, INVENT MATH, V5, P357
  • [6] Koenigsmann J, 1998, MANUSCRIPTA MATH, V95, P251
  • [7] CLASSIFICATION OF DEMUSHKIN GROUPS
    LABUTE, JP
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (01): : 106 - &
  • [8] COHOMOLOGY THEORY OF GROUPS WITH A SINGLE DEFINING RELATION
    LYNDON, RC
    [J]. ANNALS OF MATHEMATICS, 1950, 52 (03) : 650 - 665
  • [9] AMALGAMATED PRODUCTS OF PROFINITE GROUPS
    RIBES, L
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1971, 123 (04) : 357 - &
  • [10] Ribes L., 2000, PROFINITE GROUPS