Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-Love theory

被引:161
作者
Miranda, E. J. P., Jr. [1 ]
Nobrega, E. D. [2 ,3 ]
Ferreira, A. H. R. [2 ]
Dos Santos, J. M. C. [2 ]
机构
[1] Fed Inst Maranhao, IFMA, EIB, DE, Rua Afonso Pena 174, BR-65010030 Sao Luis, MA, Brazil
[2] Univ Estadual Campinas, UNICAMP, FEM, DMC, Rua Mendeleyev 200, BR-13083970 Campinas, SP, Brazil
[3] Univ Fed Maranhao, UFMA, CCET, CCEM, Ave Portugueses 1966, BR-65080805 Sao Luis, MA, Brazil
关键词
Elastic metamaterial thin plate; Flexural wave band gaps; Multiple degrees of freedom; 3D printing; Vibration control; 2-DIMENSIONAL PHONONIC CRYSTAL; LOW-FREQUENCY; PERIODIC ARRAYS; LOCAL RESONANCE; BLOCH WAVES; VIBRATION; BEAMS; ATTENUATION; PROPAGATION; DESIGN;
D O I
10.1016/j.ymssp.2018.06.059
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate theoretically the band structure of flexural waves propagating in an elastic metamaterial thin plate. Kirchhoff-Love thin plate theory is considered. We study the influence of periodic arrays of multiple degrees of freedom local resonators in square and triangular lattices. Plane wave expansion and extended plane wave expansion methods, also known as omega(k) and k(omega), respectively, are used to solve the governing equation of motion for a thin plate. The locally resonant band gaps for square and triangular lattices present almost the same attenuation for all examples analysed. However, square lattice presents broader Bragg-type band gaps with higher attenuation than triangular lattice. An experimental analysis is conducted with a real elastic metamaterial thin plate with resonators in a square lattice. Modal analysis and forced response are computed by finite element method. Plane wave expansion, finite element and experimental results present good agreement. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:480 / 504
页数:25
相关论文
共 77 条
[41]   Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect [J].
Pal, Raj Kumar ;
Ruzzene, Massimo .
NEW JOURNAL OF PHYSICS, 2017, 19
[42]  
de Miranda EJP, 2017, MATER RES-IBERO-AM J, V20, P729, DOI [10.1590/1980-5373-mr-2016-0877, 10.1590/1980-5373-MR-2016-0877]
[43]  
de Miranda EJP, 2017, MATER RES-IBERO-AM J, V20, P15, DOI [10.1590/1980-5373-mr-2017-0298, 10.1590/1980-5373-MR-2017-0298]
[44]  
de Miranda EJP, 2017, MATER RES-IBERO-AM J, V20, P555, DOI [10.1590/1980-5373-MR-2016-0898, 10.1590/1980-5373-mr-2016-0898]
[45]   Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression [J].
Peng, Hao ;
Pai, P. Frank ;
Deng, Haoguang .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2015, 103 :104-114
[46]   Two-dimensional phononic crystals: Examples and applications [J].
Pennec, Yan ;
Vasseur, Jerome O. ;
Djafari-Rouhani, Bahram ;
Dobrzynski, Leonard ;
Deymier, Pierre A. .
SURFACE SCIENCE REPORTS, 2010, 65 (08) :229-291
[47]   Using PWE/FE method to calculate the band structures of the semi-infinite beam-like PCs: Periodic in z-direction and finite in x-y plane [J].
Qian, Denghui ;
Shi, Zhiyu .
PHYSICS LETTERS A, 2017, 381 (17) :1516-1524
[48]   Local resonance bandgaps in periodic media: Theory and experiment [J].
Raghavan, L. ;
Phani, A. Srikantha .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 134 (03) :1950-1959
[49]   Evanescent waves and deaf bands in sonic crystals [J].
Romero-Garcia, V. ;
Garcia-Raffi, L. M. ;
Sanchez-Perez, J. V. .
AIP ADVANCES, 2011, 1 (04)
[50]   Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation [J].
Romero-Garcia, V. ;
Sanchez-Perez, J. V. ;
Garcia-Raffi, L. M. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)