Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-Love theory

被引:161
作者
Miranda, E. J. P., Jr. [1 ]
Nobrega, E. D. [2 ,3 ]
Ferreira, A. H. R. [2 ]
Dos Santos, J. M. C. [2 ]
机构
[1] Fed Inst Maranhao, IFMA, EIB, DE, Rua Afonso Pena 174, BR-65010030 Sao Luis, MA, Brazil
[2] Univ Estadual Campinas, UNICAMP, FEM, DMC, Rua Mendeleyev 200, BR-13083970 Campinas, SP, Brazil
[3] Univ Fed Maranhao, UFMA, CCET, CCEM, Ave Portugueses 1966, BR-65080805 Sao Luis, MA, Brazil
关键词
Elastic metamaterial thin plate; Flexural wave band gaps; Multiple degrees of freedom; 3D printing; Vibration control; 2-DIMENSIONAL PHONONIC CRYSTAL; LOW-FREQUENCY; PERIODIC ARRAYS; LOCAL RESONANCE; BLOCH WAVES; VIBRATION; BEAMS; ATTENUATION; PROPAGATION; DESIGN;
D O I
10.1016/j.ymssp.2018.06.059
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate theoretically the band structure of flexural waves propagating in an elastic metamaterial thin plate. Kirchhoff-Love thin plate theory is considered. We study the influence of periodic arrays of multiple degrees of freedom local resonators in square and triangular lattices. Plane wave expansion and extended plane wave expansion methods, also known as omega(k) and k(omega), respectively, are used to solve the governing equation of motion for a thin plate. The locally resonant band gaps for square and triangular lattices present almost the same attenuation for all examples analysed. However, square lattice presents broader Bragg-type band gaps with higher attenuation than triangular lattice. An experimental analysis is conducted with a real elastic metamaterial thin plate with resonators in a square lattice. Modal analysis and forced response are computed by finite element method. Plane wave expansion, finite element and experimental results present good agreement. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:480 / 504
页数:25
相关论文
共 77 条
[21]   Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves [J].
Huang, Jiankun ;
Shi, Zhifei .
JOURNAL OF SOUND AND VIBRATION, 2013, 332 (19) :4423-4439
[22]  
Kirchhoff G., 1850, J Reine Angew Math, P51, DOI [DOI 10.1515/CRLL.1850.40.51, 10.1515/crll.1850.40.51]
[23]   Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control [J].
Krushynska, A. O. ;
Bosia, F. ;
Miniaci, M. ;
Pugno, N. M. .
NEW JOURNAL OF PHYSICS, 2017, 19
[24]   Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials [J].
Krushynska, A. O. ;
Miniaci, M. ;
Bosia, F. ;
Pugno, N. M. .
EXTREME MECHANICS LETTERS, 2017, 12 :30-36
[25]   THEORY OF ACOUSTIC BAND-STRUCTURE OF PERIODIC ELASTIC COMPOSITES [J].
KUSHWAHA, MS ;
HALEVI, P ;
MARTINEZ, G ;
DOBRZYNSKI, L ;
DJAFARIROUHANI, B .
PHYSICAL REVIEW B, 1994, 49 (04) :2313-2322
[26]   Evanescent Bloch waves and the complex band structure of phononic crystals [J].
Laude, Vincent ;
Achaoui, Younes ;
Benchabane, Sarah ;
Khelif, Abdelkrim .
PHYSICAL REVIEW B, 2009, 80 (09)
[27]   Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation [J].
Li, Yinggang ;
Zhu, Ling ;
Chen, Tianning .
ULTRASONICS, 2017, 73 :34-42
[28]   Design guidelines for flexural wave attenuation of slender beams with local resonators [J].
Liu, Yaozong ;
Yu, Dianlong ;
Li, Li ;
Zhao, Honggang ;
Wen, Jihong ;
Wen, Xisen .
PHYSICS LETTERS A, 2007, 362 (5-6) :344-347
[29]   Locally resonant sonic materials [J].
Liu, ZY ;
Zhang, XX ;
Mao, YW ;
Zhu, YY ;
Yang, ZY ;
Chan, CT ;
Sheng, P .
SCIENCE, 2000, 289 (5485) :1734-1736
[30]  
Love A.E.H., 1888, PHILOS T R SOC LONDO, P491, DOI 10.1098/rsta.1888.0016