A survey on anomaly detection for technical systems using LSTM networks

被引:218
作者
Lindemann, Benjamin [1 ]
Maschler, Benjamin [1 ]
Sahlab, Nada [1 ]
Weyrich, Michael [1 ]
机构
[1] Univ Stuttgart, Inst Ind Automat & Software Engn, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
关键词
Anomaly detection; Artificial intelligence; Autoencoder; Context modeling; Long short-term memory; Transfer learning;
D O I
10.1016/j.compind.2021.103498
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Anomaly classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Anomaly detection with LSTM networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1. LSTM-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2. Encoder-decoder-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3. Hybrid approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4. Recent trends in learning-based anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1. Graph-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2. Transfer learning approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Anomalies represent deviations from the intended system operation and can lead to decreased efficiency as well as partial or complete system failure. As the causes of anomalies are often unknown due to complex system dynamics, efficient anomaly detection is necessary. Conventional detection approaches rely on statistical and time-invariant methods that fail to address the complex and dynamic nature of anomalies. With advances in artificial intelligence and increasing importance for anomaly detection and prevention in various domains, artificial neural network approaches enable the detection of more complex anomaly types while considering temporal and contextual characteristics. In this article, a survey on state-of-the-art anomaly detection using deep neural and especially long short-term memory networks is conducted. The investigated approaches are evaluated based on the application scenario, data and anomaly types as well as further metrics. To highlight the potential of upcoming anomaly detection techniques, graph-based and transfer learning approaches are also included in the survey, enabling the analysis of heterogeneous data as well as compensating for its shortage and improving the handling of dynamic processes. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 51 条
[1]   A survey of network anomaly detection techniques [J].
Ahmed, Mohiuddin ;
Mahmood, Abdun Naser ;
Hu, Jiankun .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2016, 60 :19-31
[2]   Graph based anomaly detection and description: a survey [J].
Akoglu, Leman ;
Tong, Hanghang ;
Koutra, Danai .
DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 29 (03) :626-688
[3]  
[Anonymous], arXiv:1710.09207
[4]  
[Anonymous], 2018, Efficient GAN-based anomaly detection
[5]   Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks [J].
Bontemps, Loic ;
Van Loi Cao ;
McDermott, James ;
Nhien-An Le-Khac .
FUTURE DATA AND SECURITY ENGINEERING, FDSE 2016, 2016, 10018 :141-152
[6]   Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study [J].
Canizo, Mikel ;
Triguero, Isaac ;
Conde, Angel ;
Onieva, Enrique .
NEUROCOMPUTING, 2019, 363 :246-260
[7]  
Chalapathy R., 2019, ARXIV, P1
[8]   Anomaly Detection for IoT Time-Series Data: A Survey [J].
Cook, Andrew A. ;
Misirli, Goksel ;
Fan, Zhong .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) :6481-6494
[9]   A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder [J].
Park, Daehyung ;
Hoshi, Yuuna ;
Kemp, Charles C. .
IEEE Robotics and Automation Letters, 2018, 3 (03) :1544-1551
[10]  
Fernando T., 2020, ARXIV201202364, P1