A Learnable Model With Calibrated Uncertainty Quantification for Estimating Canopy Height From Spaceborne Sequential Imagery

被引:10
作者
Alagialoglou, Leonidas [1 ]
Manakos, Ioannis [2 ]
Heurich, Marco [3 ,4 ,5 ]
Cervenka, Jaroslav [6 ]
Delopoulos, Anastasios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Multimedia Understanding Grp, Thessaloniki 54124, Greece
[2] Ctr Res & Technol Hellas CERTH, Informat Technol Inst, Thessaloniki 57001, Greece
[3] Bavarian Forest Natl Pk, Dept Visitor Management & Natl Pk Monitoring, D-94481 Grafenau, Germany
[4] Univ Freiburg, Chair Wildlife Ecol & Management, Fac Environm & Nat Resources, D-79106 Freiburg, Germany
[5] Inland Norway Univ Appl Sci, Inst Forest & Wildlife Management, Campus Evenstad, N-2480 Koppang, Norway
[6] Sumava Natl Pk, Kasperske Hory 34192, Czech Republic
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Calibration; canopy height estimation; multitemporal regression; recurrent neural network (RNN); Sentinel-2; uncertainty estimation; FOREST; LIDAR;
D O I
10.1109/TGRS.2022.3171407
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global-scale canopy height mapping is an important tool for ecosystem monitoring and sustainable forest management. Various studies have demonstrated the ability to estimate canopy height from a single spaceborne multispectral image using end-to-end learning techniques. In addition to texture information of a single-shot image, our study exploits multitemporal information of image sequences to improve estimation accuracy. We adopt a convolutional variant of a long shortterm memory (LSTM) model for canopy height estimation from multitemporal instances of Sentinel-2 products. Furthermore, we utilize the deep ensembles technique for meaningful uncertainty estimation on the predictions and postprocessing isotonic regression model for calibrating them. Our lightweight model (similar to 320k trainable parameters) achieves the mean absolute error (MAE) of 1.29 m in a European test area of 79 km(2). It outperforms the state-of-the-art methods based on single-shot spaceborne images as well as costly airborne images while providing additional confidence maps that are shown to he well calibrated. Moreover, the trained model is shown to be transferable in a different country of Europe using a fine-tuning area of as low as similar to 2 km(2) with MAE = 1.94 m.
引用
收藏
页数:13
相关论文
共 35 条
[1]  
Alagialoglou L., 2021, MULTIMEDIA MODELING, P307
[2]   Height estimation from single aerial images using a deep convolutional encoder-decoder network [J].
Amirkolaee, Hamed Amini ;
Arefi, Hossein .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 149 :50-66
[3]  
[Anonymous], 2022, World Imagery Basemap
[4]  
[Anonymous], 2019, ARXIV190413270
[5]  
[Anonymous], 2015, arXiv
[6]   Canopy Height Estimation from Single Multispectral 2D Airborne Imagery Using Texture Analysis and Machine Learning in Structurally Rich Temperate Forests [J].
Boutsoukis, Christos ;
Manakos, Ioannis ;
Heurich, Marco ;
Delopoulos, Anastasios .
REMOTE SENSING, 2019, 11 (23)
[7]   Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park [J].
Cailleret, Maxime ;
Heurich, Marco ;
Bugmann, Harald .
FOREST ECOLOGY AND MANAGEMENT, 2014, 328 :179-192
[8]   Deeply uncertain: comparing methods of uncertainty quantification in deep learning algorithms [J].
Caldeira, Joao ;
Nord, Brian .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01)
[9]   The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography [J].
Dubayah, Ralph ;
Blair, James Bryan ;
Goetz, Scott ;
Fatoyinbo, Lola ;
Hansen, Matthew ;
Healey, Sean ;
Hofton, Michelle ;
Hurtt, George ;
Kellner, James ;
Luthcke, Scott ;
Armston, John ;
Tang, Hao ;
Duncanson, Laura ;
Hancock, Steven ;
Jantz, Patrick ;
Marselis, Suzanne ;
Patterson, Paul L. ;
Qi, Wenlu ;
Silva, Carlos .
SCIENCE OF REMOTE SENSING, 2020, 1
[10]   National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series [J].
Frantz, David ;
Schug, Franz ;
Okujeni, Akpona ;
Navacchi, Claudio ;
Wagner, Wolfgang ;
van der Linden, Sebastian ;
Hostert, Patrick .
REMOTE SENSING OF ENVIRONMENT, 2021, 252