Quantum sensing

被引:2739
作者
Degen, C. L. [1 ]
Reinhard, F. [2 ,3 ]
Cappellaro, P. [4 ,5 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, Otto Stern Weg 1, CH-8093 Zurich, Switzerland
[2] Tech Univ Munich, Walter Schottky Inst, Coulombwall 4, D-85748 Garching, Germany
[3] Tech Univ Munich, Phys Dept, Coulombwall 4, D-85748 Garching, Germany
[4] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; ELECTRON-SPIN; COHERENT CONTROL; SQUEEZED STATES; SINGLE SPINS; GRAVITATIONAL ACCELERATION; DYNAMICAL SUPPRESSION; SUPERCONDUCTING QUBIT; ENHANCED SENSITIVITY; FREQUENCY STANDARDS;
D O I
10.1103/RevModPhys.89.035002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
"Quantum sensing" describes the use of a quantum system, quantum properties, or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors or atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions, and flux qubits. The field is expected to provide new opportunities-especially with regard to high sensitivity and precision-in applied physics and other areas of science. This review provides an introduction to the basic principles, methods, and concepts of quantum sensing from the viewpoint of the interested experimentalist.
引用
收藏
页数:39
相关论文
共 377 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/nphoton.2013.177, 10.1038/NPHOTON.2013.177]
[2]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
[3]  
Abragam A., 1961, The Principles of Nuclear Magnetism, P599
[4]   Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Santori, C. ;
Fu, K. -M. C. ;
Barclay, P. E. ;
Beausoleil, R. G. ;
Linget, H. ;
Roch, J. F. ;
Treussart, F. ;
Chemerisov, S. ;
Gawlik, W. ;
Budker, D. .
PHYSICAL REVIEW B, 2009, 80 (11)
[5]   Composite-pulse magnetometry with a solid-state quantum sensor [J].
Aiello, Clarice D. ;
Hirose, Masashi ;
Cappellaro, Paola .
NATURE COMMUNICATIONS, 2013, 4
[6]   Long-range order in electronic transport through disordered metal films [J].
Aigner, S. ;
Della Pietra, L. ;
Japha, Y. ;
Entin-Wohlman, O. ;
David, T. ;
Salem, R. ;
Folman, R. ;
Schmiedmayer, J. .
SCIENCE, 2008, 319 (5867) :1226-1229
[7]  
Ajoy A, 2017, P NATL ACAD SCI USA, V114, P2149, DOI 10.1073/pnas.1610835114
[8]   Mixed-state quantum transport in correlated spin networks [J].
Ajoy, Ashok ;
Cappellaro, Paola .
PHYSICAL REVIEW A, 2012, 85 (04)
[9]   Filter design for hybrid spin gates [J].
Albrecht, Andreas ;
Plenio, Martin B. .
PHYSICAL REVIEW A, 2015, 92 (02)
[10]   STATISTICS OF ATOMIC FREQUENCY STANDARDS [J].
ALLAN, DW .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02) :221-&