Interface engineering using Y2O3 scaffold to enhance the thermoelectric performance of CsSnI3 thin film

被引:34
作者
Baranwal, Ajay Kumar [1 ]
Saini, Shrikant [2 ]
Wang, Zhen [3 ]
Hirotani, Daisuke [3 ]
Yabuki, Tomohide [2 ]
Iikubo, Satoshi [3 ]
Miyazaki, Koji [2 ]
Hayase, Shuzi [1 ]
机构
[1] Univ Electrocommun, I Powered Energy Syst Res Ctr, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[2] Kyushu Inst Technol, Dept Mech & Control Engn, 1-1 Sensuicho, Kitakyushu, Fukuoka 8048550, Japan
[3] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
基金
日本科学技术振兴机构;
关键词
CsSnI3; Y2O3; Perovskite; Thermoelectric film; SOLAR-CELLS; SEMICONDUCTORS; CONDUCTIVITY; PEROVSKITES; DEFECTS;
D O I
10.1016/j.orgel.2019.105488
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solution processed Cesium Tin halide perovskites (CsSnI3) are inorganic crystal to be explored for thermoelectric applications. Here, we report a novel strategy using an inorganic Y2O3 scaffold to improve the thermoelectric performance. The additional Y2O3 influence the CsSnI3 crystal growth and favor more conducting behavior with intrinsic defects (Sn4+) formation. Therefore, the resulting solution processed composite film Y2O3/CsSnI3 show much improved electrical conductivity of similar to 310 S/cm as compared to similar to 98 S/cm of pristine CsSnI3 film. Under the influence of Y2O3, the resulting phonon scattering path was enhanced significantly due to formed defects/vacancy and reduced CsSnI3 crystal size, which showed a reduction in thermal conductivity from 0.74 W/mK to 0.28 W/mK. This work paves a new paradigm to improve the thermoelectric performance of solution based thermoelectric generator.
引用
收藏
页数:6
相关论文
共 42 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], [No title captured]
[3]   Graded Bandgap CsPbI2+xBr1-x Perovskite Solar Cells with a Stabilized Efficiency of 14.4% [J].
Bian, Hui ;
Bai, Dongliang ;
Jin, Zhiwen ;
Wang, Kang ;
Liang, Lei ;
Wang, Haoran ;
Zhang, Jingru ;
Wang, Qian ;
Liu, Shengzhong .
JOULE, 2018, 2 (08) :1500-1510
[4]   Carbon-Nanotube-Based Thermoelectric Materials and Devices [J].
Blackburn, Jeffrey L. ;
Ferguson, Andrew J. ;
Cho, Chungyeon ;
Grunlan, Jaime C. .
ADVANCED MATERIALS, 2018, 30 (11)
[5]   RETRACTED: Towards polymer-based organic thermoelectric generators (Retracted Article) [J].
Bubnova, Olga ;
Crispin, Xavier .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9345-9362
[6]  
Calkins H, 2017, J ARRYTHM, V33, P369, DOI 10.1016/j.joa.2017.08.001
[7]   CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions [J].
Chung, In ;
Song, Jung-Hwan ;
Im, Jino ;
Androulakis, John ;
Malliakas, Christos D. ;
Li, Hao ;
Freeman, Arthur J. ;
Kenney, John T. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (20) :8579-8587
[8]   All-solid-state dye-sensitized solar cells with high efficiency [J].
Chung, In ;
Lee, Byunghong ;
He, Jiaqing ;
Chang, Robert P. H. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 485 (7399) :486-U94
[9]   Crystal lattice spacing shrinkage and band-gap narrowing phenomena in In-doped SnO2 nanoparticles [J].
Feng, Caili ;
Duan, Junhong ;
Liu, Gang .
MATERIALS RESEARCH EXPRESS, 2015, 2 (04)
[10]   Organic thermoelectric devices based on a stable n-type nanocomposite printed on paper [J].
Ferhat, Salim ;
Domain, Christophe ;
Vidal, Julien ;
Noel, Didier ;
Ratier, Bernard ;
Lucas, Bruno .
SUSTAINABLE ENERGY & FUELS, 2018, 2 (01) :199-208