Experimental Characterization of a Spin Quantum Heat Engine

被引:291
作者
Peterson, John P. S. [1 ,2 ]
Batalhao, Tiago B. [3 ,4 ,5 ]
Herrera, Marcela [3 ]
Souza, Alexandre M. [6 ]
Sarthour, Roberto S. [6 ]
Oliveira, Ivan S. [6 ]
Serra, Roberto M. [3 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
[4] Singapore Univ Technol & Design, 8 Somapah Rd, Singapore 487372, Singapore
[5] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[6] Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
基金
新加坡国家研究基金会; 巴西圣保罗研究基金会;
关键词
MODEL; WORK;
D O I
10.1103/PhysRevLett.123.240601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Developments in the thermodynamics of small quantum systems envisage nonclassical thermal machines. In this scenario, energy fluctuations play a relevant role in the description of irreversibility. We experimentally implement a quantum heat engine based on a spin-1/2 system and nuclear magnetic resonance techniques. Irreversibility at a microscope scale is fully characterized by the assessment of energy fluctuations associated with the work and heat flows. We also investigate the efficiency lag related to the entropy production at finite time. The implemented heat engine operates in a regime where both thermal and quantum fluctuations (associated with transitions among the instantaneous energy eigenstates) are relevant to its description. Performing a quantum Otto cycle at maximum power, the proof-of-concept quantum heat engine is able to reach an efficiency for work extraction (eta approximate to 42%) very close to its thermodynamic limit (eta = 44%).
引用
收藏
页数:7
相关论文
共 70 条
[61]   Thermoelectric energy harvesting with quantum dots [J].
Sothmann, Bjorn ;
Sanchez, Rafael ;
Jordan, Andrew N. .
NANOTECHNOLOGY, 2015, 26 (03)
[62]   Piezoresistive heat engine and refrigerator [J].
Steeneken, P. G. ;
Le Phan, K. ;
Goossens, M. J. ;
Koops, G. E. J. ;
Brom, G. J. A. M. ;
van der Avoort, C. ;
van Beek, J. T. M. .
NATURE PHYSICS, 2011, 7 (04) :354-359
[63]   Fluctuation theorems:: Work is not an observable [J].
Talkner, Peter ;
Lutz, Eric ;
Haenggi, Peter .
PHYSICAL REVIEW E, 2007, 75 (05)
[64]  
Thierschmann H, 2015, NAT NANOTECHNOL, V10, P854, DOI [10.1038/NNANO.2015.176, 10.1038/nnano.2015.176]
[65]   Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures [J].
Uzdin, Raam ;
Levy, Amikam ;
Kosloff, Ronnie .
PHYSICAL REVIEW X, 2015, 5 (03)
[66]   The multilevel four-stroke swap engine and its environment [J].
Uzdin, Raam ;
Kosloff, Ronnie .
NEW JOURNAL OF PHYSICS, 2014, 16
[67]   Energy and temperature fluctuations in the single electron box [J].
van den Berg, Tineke L. ;
Brange, Fredrik ;
Samuelsson, Peter .
NEW JOURNAL OF PHYSICS, 2015, 17
[68]   Quantum thermodynamics [J].
Vinjanampathy, Sai ;
Anders, Janet .
CONTEMPORARY PHYSICS, 2016, 57 (04) :545-579
[69]   Quantum Performance of Thermal Machines over Many Cycles [J].
Watanabe, Gentaro ;
Venkatesh, B. Prasanna ;
Talkner, Peter ;
del Campo, Adolfo .
PHYSICAL REVIEW LETTERS, 2017, 118 (05)
[70]   Quantum Optomechanical Heat Engine [J].
Zhang, Keye ;
Bariani, Francesco ;
Meystre, Pierre .
PHYSICAL REVIEW LETTERS, 2014, 112 (15)