Soliton, breather, and rogue wave solutions for solving the nonlinear Schrodinger equation using a deep learning method with physical constraints*

被引:75
|
作者
Pu, Jun-Cai [1 ,2 ]
Li, Jun [2 ]
Chen, Yong [1 ,2 ,3 ,4 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Pure Math & Math Practice, Sch Math Sci, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200241, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[4] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning method; neural network; soliton solutions; breather solution; rogue wave solutions; NEURAL-NETWORKS; EVOLUTION;
D O I
10.1088/1674-1056/abd7e3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas. However, due to the difficulty of solving this equation, in particular in high dimensions, lots of methods are proposed to effectively obtain different kinds of solutions, such as neural networks among others. Recently, a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation's dynamical behaviors from spatiotemporal data directly. Compared with traditional neural networks, this method can obtain remarkably accurate solution with extraordinarily less data. Meanwhile, this method also provides a better physical explanation and generalization. In this paper, based on the above method, we present an improved deep learning method to recover the soliton solutions, breather solution, and rogue wave solutions of the nonlinear Schrodinger equation. In particular, the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time. Moreover, the effects of different numbers of initial points sampled, collocation points sampled, network layers, neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions. Numerical experiments show that the dynamical behaviors of soliton solutions, breather solution, and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Soliton, breather, and rogue wave solutions for solving the nonlinear Schr?dinger equation using a deep learning method with physical constraints
    蒲俊才
    李军
    陈勇
    Chinese Physics B, 2021, (06) : 22 - 32
  • [2] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrodinger equation
    Tao Yong-Sheng
    He Jing-Song
    Porsezian, K.
    CHINESE PHYSICS B, 2013, 22 (07)
  • [3] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [4] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [5] Breather solutions of a fourth-order nonlinear Schrodinger equation in the degenerate, soliton, and rogue wave limits
    Chowdury, Amdad
    Krolikowski, Wieslaw
    Akhmediev, N.
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [6] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation
    Feng, Lian-Li
    Zhang, Tian-Tian
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 133 - 140
  • [7] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [8] Breather, soliton and rogue wave of a two-component derivative nonlinear Schrodinger equation
    Jia, Hui-Xian
    Zuo, Da-Wei
    Li, Xiang-Hong
    Xiang, Xiao-Shuo
    PHYSICS LETTERS A, 2021, 405
  • [9] Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation
    Liu, Xiaotong
    Yong, Xuelin
    Huang, Yehui
    Yu, Rui
    Gao, Jianwei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) : 257 - 266
  • [10] Soliton and breather solutions of the modified nonlinear Schrodinger equation
    Zhang, Hai-Qiang
    Zhai, Bao-Guo
    Wang, Xiao-Li
    PHYSICA SCRIPTA, 2012, 85 (01)