Soluble groups with few orbits under automorphisms

被引:1
作者
Bastos, Raimundo [1 ]
Dantas, Alex C. [1 ]
de Melo, Emerson [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Extensions; Automorphisms; Soluble groups;
D O I
10.1007/s10711-020-00525-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group. The orbits of the natural action of Aut(G) on G are called "automorphism orbits" of G, and the number of automorphism orbits of G is denoted by.(G). We prove that if G is a soluble group of finite rank such that (G) < 8, then G contains a torsionfree radicable nilpotent characteristic subgroup K such that G = K H, where H is a finite group. Moreover, we classify the mixed order soluble groups of finite rank such that.(G) = 3.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 9 条
[1]   FC-groups with finitely many automorphism orbits [J].
Bastos, Raimundo A. ;
Dantas, Alex C. .
JOURNAL OF ALGEBRA, 2018, 516 :401-413
[2]   Finite groups with six or seven automorphism orbits [J].
Dantas, Alex Carrazedo ;
Garonzi, Martino ;
Bastos, Raimundo .
JOURNAL OF GROUP THEORY, 2017, 20 (05) :945-954
[3]   Classifying finite simple groups with respect to the number of orbits under the action of the automorphism group [J].
Kohl, S .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) :4785-4794
[4]   AUTOMORPHISM ORBITS OF FINITE-GROUPS [J].
LAFFEY, TJ ;
MACHALE, D .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1986, 40 :253-260
[5]  
Lennox J.C., 2004, The Theory of Infinite Soluble Groups
[6]   Groups that are almost homogeneous [J].
Maurer, H ;
Stroppel, M .
GEOMETRIAE DEDICATA, 1997, 68 (02) :229-243
[7]  
Robinson D., 1996, COURSE THEORY GROUPS, V80
[8]   Finding representatives for the orbits under the automorphism group of a bounded Abelian group [J].
Schwachhöfer, M ;
Stroppel, M .
JOURNAL OF ALGEBRA, 1999, 211 (01) :225-239
[9]  
Stroppel M, 2002, TOPOL P, V26, P819