Triangular CesA ro summability of two dimensional Fourier series

被引:8
作者
Weisz, F. [1 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
关键词
Hardy space; p-atom; interpolation; Fourier series; triangular summation; Cesaro summability; CONVERGENCE;
D O I
10.1007/s10474-011-0095-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the maximal operator of the triangular CesA ro means of a two-dimensional Fourier series is bounded from the periodic Hardy space H(p)(T(2)) to L(p)(T(2)) for all 2/(2+alpha)< pa parts per thousand broken vertical bar a and, consequently, is of weak type (1,1). As a consequence we obtain that the triangular CesA ro means of a function f epsilon L(1) (T(2)) converge a.e. to f.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 13 条
  • [1] [Anonymous], 2002, TRIGONOMETRIC SERIES
  • [2] Fejer means for multivariate Fourier series
    Berens, H
    Xu, Y
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (03) : 449 - 465
  • [3] On l-1 Riesz summability of the inverse Fourier integral
    Berens, H
    Li, ZK
    Xu, Y
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2001, 12 (01): : 41 - 53
  • [4] ON CONVERGENCE AND GROWTH OF PARTIAL SUMS OF FOURIER SERIES
    CARLESON, L
    [J]. ACTA MATHEMATICA UPPSALA, 1966, 116 (1-2): : 135 - &
  • [5] CONVERGENCE OF MULTIPLE FOURIER SERIES
    FEFFERMAN, C
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (05) : 744 - +
  • [6] Grafakos L., 2004, Classical and Modern Fourier Analysis
  • [7] Herriot J., 1944, Duke Math. J., V11, P735
  • [8] Summability of product Jacobi expansions
    Li, ZK
    Xu, Y
    [J]. JOURNAL OF APPROXIMATION THEORY, 2000, 104 (02) : 287 - 301
  • [9] Marcinkiewicz J., 1939, Fundam. Math, V32, P122, DOI DOI 10.4064/FM-32-1-122-132
  • [10] Stein EliasM., 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, V43, P695