Lipschitz stability in inverse parabolic problems by the Carleman estimate

被引:185
作者
Imanuvilov, OY
Yamamoto, M
机构
[1] Korea Adv Inst Sci, Seoul 130012, South Korea
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
关键词
D O I
10.1088/0266-5611/14/5/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system yt(t, x) = -Ay(t, x) + g(t, x) 0 < t < T, x epsilon Omega y(theta, x) = y(0)(x) x epsilon Omega with a suitable boundary condition, where Omega subset of R-n is a bounded domain, -A is a uniformly elliptic operator of the second order whose coefficients are suitably regular for (t, x), theta epsilon]0, T[ is fixed, and a function g(t, x) satisfies \gt(t, x)\ less than or equal to C\g(theta, x) \ for (t, x) epsilon [0, T] x <(Omega)over bar>. Our inverse problems are determinations of g using overdetermining data gamma(vertical bar]0,T[x omega) or {gamma(vertical bar]0, T[x Gamma 0), del gamma(vertical bar]0, T[x Gamma 0)}, where omega subset of Omega and Gamma(0) subset of partial derivative Omega. Our main result is the Lipschitz stability in these inverse problems. We also consider the determination of f = f(x), x epsilon Omega in the case of g(t, x) = f(x)R(t, x) with given R satisfying R(theta, .) > 0 on Omega. Finally, we discuss an upper estimation of our overdetermining data by means of f.
引用
收藏
页码:1229 / 1245
页数:17
相关论文
共 24 条
  • [1] Ames K. A., 1997, NONSTANDARD IMPROPER
  • [2] [Anonymous], 1975, IMPROPERLY POSED PRO
  • [3] Bukhgeim A. L., 1981, SOV MATH DOKL, V24, P244
  • [5] CANNON JR, 1984, ONE DIMENSIONAL HEAT
  • [6] CHAE D, 1996, J DYN CONTROL SYST, V2, P449
  • [7] Friedman A., 1983, PARTIAL DIFFERENTIAL
  • [8] Fursikov A., 1996, LECT NOTES SEOUL NAT, V34
  • [9] IMANUVILOV OY, 1995, SB MATH, V186, P879, DOI DOI 10.1070/SM1995V186N06ABEH000047
  • [10] IMANUVILOV OY, 1993, RUSS MATH SURV, V48, P192