Engineered polyketide biosynthesis and biocatalysis in Escherichia coli

被引:66
作者
Gao, Xue [1 ]
Wang, Peng [1 ]
Tang, Yi [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Biosynthesis; Megasynthase; Heterologous host; PRECURSOR-DIRECTED BIOSYNTHESIS; GENE-CLUSTER; AROMATIC POLYKETIDES; SYNTHASE GENE; SACCHAROPOLYSPORA-ERYTHRAEA; AMYCOLATOPSIS-MEDITERRANEI; COMBINATORIAL BIOSYNTHESIS; HETEROLOGOUS PRODUCTION; GIBBERELLA-FUJIKUROI; EFFICIENT PRODUCTION;
D O I
10.1007/s00253-010-2860-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Polyketides are important bioactive natural products biosynthesized by bacteria, fungi, and plants. The enzymes that synthesize polyketides are collectively referred to as polyketide synthases (PKSs). Because many of the natural hosts that produce polyketides are difficult to culture or manipulate, establishing a universal heterologous host that is genetically tractable has become an important goal toward the engineered biosynthesis of polyketides and analogues. Here, we summarize the recent progresses in engineering Escherichia coli as a heterologous host for reconstituting PKSs of different types. Our increased understanding of PKS enzymology and structural biology, combined with new tools in protein engineering, metabolic engineering, and synthetic biology, has firmly established E. coli as a powerful host for producing polyketides.
引用
收藏
页码:1233 / 1242
页数:10
相关论文
共 72 条
  • [1] Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases
    Abe, Ikuro
    Morita, Hiroyuki
    [J]. NATURAL PRODUCT REPORTS, 2010, 27 (06) : 809 - 838
  • [2] Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699
    August, PR
    Tang, L
    Yoon, YJ
    Ning, S
    Muller, R
    Yu, TW
    Taylor, M
    Hoffmann, D
    Kim, CG
    Zhang, XH
    Hutchinson, CR
    Floss, HG
    [J]. CHEMISTRY & BIOLOGY, 1998, 5 (02): : 69 - 79
  • [3] An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases
    Austin, MB
    Bowman, ME
    Ferrer, JL
    Schröder, J
    Noel, JP
    [J]. CHEMISTRY & BIOLOGY, 2004, 11 (09): : 1179 - 1194
  • [4] The chalcone synthase superfamily of type III polyketide synthases
    Austin, MB
    Noel, JP
    [J]. NATURAL PRODUCT REPORTS, 2003, 20 (01) : 79 - 110
  • [5] Molecular engineering approaches to peptide, polyketide and other antibiotics
    Baltz, Richard H.
    [J]. NATURE BIOTECHNOLOGY, 2006, 24 (12) : 1533 - 1540
  • [6] Precursor-directed biosynthesis of epothilone in Escherichia coli
    Boddy, CN
    Hotta, K
    Tse, ML
    Watts, RE
    Khosla, C
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (24) : 7436 - 7437
  • [7] BOLLAG DM, 1995, CANCER RES, V55, P2325
  • [8] Programming of Erythromycin Biosynthesis by a Modular Polyketide Synthase
    Cane, David E.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (36) : 27517 - 27523
  • [9] Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations
    Cane, DE
    Walsh, CT
    Khosla, C
    [J]. SCIENCE, 1998, 282 (5386) : 63 - 68
  • [10] AN UNUSUALLY LARGE MULTIFUNCTIONAL POLYPEPTIDE IN THE ERYTHROMYCIN-PRODUCING POLYKETIDE SYNTHASE OF SACCHAROPOLYSPORA-ERYTHRAEA
    CORTES, J
    HAYDOCK, SF
    ROBERTS, GA
    BEVITT, DJ
    LEADLAY, PF
    [J]. NATURE, 1990, 348 (6297) : 176 - 178