The Long Time Behavior of a Stochastic Logistic Model with Infinite Delay and Impulsive Perturbation

被引:3
作者
Lu, Chun [1 ]
Wu, Kaining [2 ]
机构
[1] Qingdao Univ Technol, Dept Math, Qingdao 266520, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 04期
基金
中国国家自然科学基金;
关键词
White noise; Impulsive perturbation; Stochastic permanence; Infinite delay; ASYMPTOTIC STABILITY; PERSISTENCE; EXTINCTION; EQUATION; DYNAMICS; SYSTEMS;
D O I
10.11650/tjm.20.2016.5491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers a stochastic logistic model with infinite delay and impulsive perturbation. Firstly, with the space C-g as phase space, the definition of solution to a stochastic functional differential equation with infinite delay and impulsive perturbation is established. According to this definition, we show that our model has an unique global positive solution. Then we establish the sufficient and necessary conditions for extinction and stochastic permanence of the model. In addition, the effects of impulsive perturbation and delay on extinction and stochastic permanence are discussed, respectively.
引用
收藏
页码:921 / 941
页数:21
相关论文
共 28 条
[1]   Asymptotic stability of competitive systems with delays and impulsive perturbations [J].
Ahmad, Shair ;
Stamova, Ivanka M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) :686-700
[2]  
[Anonymous], 1989, Series in Modern Applied Mathematics
[3]  
[Anonymous], 1988, FUNKC EKVACIOJ-SER I
[4]   Stochastic delay Lotka-Volterra model [J].
Bahar, A ;
Mao, XR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (02) :364-380
[5]  
Bahar A., 2004, Int. J. Pure Appl. Math., V11, P377
[6]  
Bainov D., 1993, PITMAN MONOGRAPHS SU, V66
[7]   Noise suppresses or expresses exponential growth [J].
Deng, Feiqi ;
Luo, Qi ;
Mao, Xuerong ;
Pang, Sulin .
SYSTEMS & CONTROL LETTERS, 2008, 57 (03) :262-270
[8]  
Haddock J, 1988, FUNKC EKVACIOJ-SER I, V31, P349
[9]  
Hale J.K., 1978, Funkcial. Ekvac., V21, P11
[10]   GLOBAL STABILITY FOR INFINITE DELAY LOTKA-VOLTERRA TYPE SYSTEMS [J].
KUANG, Y ;
SMITH, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :221-246