Variation in transistor performance and leakage in nanometer-scale technologies

被引:76
作者
Saxena, Sharad [1 ]
Hess, Christopher [1 ]
Karbasi, Hossein [1 ]
Rossoni, Angelo [1 ]
Tonello, Stefano [1 ]
McNamara, Patrick [1 ]
Lucherini, Silvia [1 ]
Minehane, Sean [1 ]
Dolainsky, Christoph [1 ]
Quarantelli, Michele [1 ]
机构
[1] PDF Solut Inc, San Jose, CA 95110 USA
关键词
design for manufacturability (DFM); semiconductor device variation; tolerance analysis; yield estimation; yield optimization;
D O I
10.1109/TED.2007.911351
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Variation in transistor characteristics is increasing as CMOS transistors are scaled to nanometer feature sizes. This increase in transistor variability poses a serious challenge to the cost-effective utilization of scaled technologies. Meeting this challenge requires comprehensive and efficient approaches for variability characterization, minimization, and mitigation. This paper describes an efficient infrastructure for characterizing the various types of variation in transistor characteristics. A sample of results obtained from applying this infrastructure to a number of technologies at the 90-, 65-, and 45-nm nodes is presented. This paper then illustrates the impact of the observed variability on SRAM, analog and digital circuit blocks used in system-on-chip designs. Different approaches for minimizing transistor variation and mitigating its impact on product performance and yield are also described.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 59 条
[1]  
Adachi K, 2005, 2005 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P142
[2]   APPLICATION OF STATISTICAL DESIGN AND RESPONSE-SURFACE METHODS TO COMPUTER-AIDED VLSI DEVICE DESIGN [J].
ALVAREZ, AR ;
ABDI, BL ;
YOUNG, DL ;
WEED, HD ;
TEPLIK, J ;
HERALD, ER .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1988, 7 (02) :272-288
[3]  
[Anonymous], 2006, Fundamentals of Semiconductor Manufacturing and Process Control, DOI [DOI 10.1002/0471790281.CH2, 10.1002/0471790281.ch2]
[4]   Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-μm MOSFET's with epitaxial and δ-doped channels [J].
Asenov, A ;
Saini, S .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (08) :1718-1724
[5]   Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs [J].
Asenov, A ;
Brown, AR ;
Davies, JH ;
Kaya, S ;
Slavcheva, G .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (09) :1837-1852
[6]  
ASHAN I, 2006, VLSI S, P170
[7]   High-performance CMOS variability in the 65-nm regime and beyond [J].
Bernstein, K. ;
Frank, D. J. ;
Gattiker, A. E. ;
Haensch, W. ;
Ji, B. L. ;
Nassif, S. R. ;
Nowak, E. J. ;
Pearson, D. J. ;
Rohrer, N. J. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (4-5) :433-449
[8]  
Bianchi RA, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P117, DOI 10.1109/IEDM.2002.1175792
[9]  
Boeuf F, 2005, 2005 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P130
[10]   Impact of extrinsic and intrinsic parameter fluctuations on CMOS circuit performance [J].
Bowman, KA ;
Tang, XH ;
Eble, JC ;
Meindl, JD .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (08) :1186-1193