Vertex colouring edge partitions

被引:82
作者
Addario-Berry, L
Aldred, REL
Dalal, K
Reed, BA
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[2] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
关键词
edge weights; vertex colours; degree-constrained subgraphs;
D O I
10.1016/j.jctb.2005.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A partition of the edges of a graph G into sets {S-1,...,S-k} defines a multiset X-nu for each vertex nu where the multiplicity of i in X-nu is the number of edges incident to v in Si. We show that the edges of every graph can be partitioned into 4 sets such that the resultant multisets give a vertex colouring of G. In other words, for every edge (u, nu) of G, X-u not equal X-nu. Furthermore, if G has minimum degree at least 1000, then there is a partition of E(G) into 3 sets such that the corresponding multisets yield a vertex colouring. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 8 条
[1]  
ADDARIOBERRY L, 2004, VERTEX COLOURING EDG
[2]  
AIGNER M, 1992, COMBINATORICA, V90, P1
[3]   On the analytical description of ageing kinetics in ceramic manganite-based NTC thermistors [J].
Balitska, VO ;
Butkievich, B ;
Shpotyuk, OI ;
Vakiv, MM .
MICROELECTRONICS RELIABILITY, 2002, 42 (12) :2003-2007
[4]  
Burris AC, 1997, J GRAPH THEOR, V26, P73, DOI 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO
[5]  
2-C
[6]  
EDWARDS K, 1997, J LOND MATH SOC, V255, P435
[7]   Edge weights and vertex colours [J].
Karonski, M ;
Luczak, T ;
Thomason, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) :151-157
[8]  
Plummer M.D., 1986, Matching theory