SPARSE CONVOLUTION SUBSPACE CLUSTERING

被引:1
作者
Luo, Chuan [1 ]
Zhao, Linchang [1 ]
Zhang, Taiping [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing, Peoples R China
来源
PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR) | 2020年
关键词
Sparse convolutional representations; Group sparse; ADMM; Subspace clustering;
D O I
10.1109/ICWAPR51924.2020.9494614
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The real-world high-dimensional data lie on low-dimensional manifolds embedded within the high-dimensional space. Therefore, clustering in high-dimensional spaces is a difficult problem. Subspace-based clustering methods are proposed to project the high dimensional data into a low-dimensional space, and then find clusters in this low-dimensional subspaces of the high dimensional data, instead of finding clusters in the entire feature space. In this work, we propose a subspace clustering method called Sparse Convolution Subspace Clustering (SCSC) which is inspired by Sparse Subspace Clustering (SSC). SSC is to find a sparse representations of a data point in terms of other points while SCSC tries to find a sparse convolutional representations of a data point in terms of other points. A group optimization method based alternating direction method of multipliers (ADMM) is used to solve the sparse convolutional representation problem. It should be pointed out that SSC is a special case of SCSC while the convolution kernel size is set as 1x1. The experimental results on face data show the effectiveness of the proposed SCSC.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
[31]   Latent Space Sparse and Low-Rank Subspace Clustering [J].
Patel, Vishal M. ;
Hien Van Nguyen ;
Vidal, Rene .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (04) :691-701
[32]   LRSR: Low-Rank-Sparse representation for subspace clustering [J].
Wang, Jun ;
Shi, Daming ;
Cheng, Dansong ;
Zhang, Yongqiang ;
Gao, Junbin .
NEUROCOMPUTING, 2016, 214 :1026-1037
[33]   Tensor LRR and Sparse Coding-Based Subspace Clustering [J].
Fu, Yifan ;
Gao, Junbin ;
Tien, David ;
Lin, Zhouchen ;
Hong, Xia .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (10) :2120-2133
[34]   A Nonconvex Implementation of Sparse Subspace Clustering: Algorithm and Convergence Analysis [J].
Deng, Xiaoge ;
Sun, Tao ;
Du, Peibing ;
Li, Dongsheng .
IEEE ACCESS, 2020, 8 :54741-54750
[35]   SIDE-INFORMATION-INDUCED REWEIGHTED SPARSE SUBSPACE CLUSTERING [J].
Huang, Hua ;
Wang, Weiwei ;
Lu, Chengwu ;
Feng, Xiangchu ;
He, Ruiqiang .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (03) :1235-1252
[36]   Boosting Subspace Co-Clustering via Bilateral Graph Convolution [J].
Fettal, Chakib ;
Labiod, Lazhar ;
Nadif, Mohamed .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (03) :960-971
[37]   Convolution-augmented transformer network for hyperspectral image subspace clustering [J].
Zhongbiao Zhang ;
Huajun Wang ;
Shujun Liu ;
Jiaxin Chen ;
Zhongyu Zhang ;
Sen Wang .
Earth Science Informatics, 2023, 16 :2439-2453
[38]   SPARSE SUBSPACE CLUSTERING USING SQUARE-ROOT PENALTY [J].
Meng, Linghang ;
Shen, Xinyue ;
Gu, Yuantao .
2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
[39]   Efficient Image Segmentation Method Based on Sparse Subspace Clustering [J].
Huang, Jianping .
PROCEEDINGS OF THE 2016 6TH INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION, INFORMATION AND CONTROL (MEICI 2016), 2016, 135 :530-533
[40]   Low-rank sparse subspace clustering with a clean dictionary [J].
You, Cong-Zhe ;
Shu, Zhen-Qiu ;
Fan, Hong-Hui .
JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15